• 제목/요약/키워드: Machine Tool Linear Slide

검색결과 5건 처리시간 0.02초

레이저-수광소자를 이용한 선형 이송측의 기하학적 오차측정 시스템 (Geometric error assessment system for linear guideway using laser-photodiodes)

  • 박희재;주종남;황상욱
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.180-188
    • /
    • 1994
  • Error assessment and evaluation for machine for machine tool slides have been considered as essential tools for improving accuracy. In this paper, a computer aided measurement technique is proposed using photo pin diodes of quadrant type and laser source. In thedeveloped system, three photo diodes are mounted on a sensor mounting table, and the sensored signal is processed by specially designed signal conditioner to give fine resolution with minimum noise. A micro computer inputs the processed signal, and the geometric errors of five degree of freedoms are successfully evaluated. Pitch, roll, yaw, vertical and horizontal straightness errors are thus assessed simultaneously for a machine tool slide. Calibration techniques such as optics calibration, photo diode calibration are proposed and implemented, giving precise calibration for the measurement system. The developed system has been applied to a practical machine tool slide, and has been found as one of efficient and precise technique for machine tool slide.

  • PDF

Linear Motor 이송계의 진동 최소화를 위한 이송속도 최적화 (A Study on the Feed Rate Optimization of a Linear Motored Feed Drive System for Minimum Vibrations)

  • 최영휴;홍진현;최응영;김태형;최원선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.321-325
    • /
    • 2004
  • Linear motor feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modem machine tools require high speed and high precision feed drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a linear motor, for its minimum vibrations. Firstly, a 4-degree-of-freedom lumped parameter model is proposed for the vibration analysis of a linear motor driven machine tool feed drive system. Next, a feed rate optimization of the feed slide is carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile with jerk continuity. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

고속 HMC 이송계의 운동 특성 평가 (Performance Assessment of Linear Motor for High Speed Machining Center)

  • 홍원표;강은구;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF

리니어모터 이송시스템의 진동저감을 위한 이송속도 최적화 (Feed rate optimizaton of a PMLSM driven feed drive system for minimum vibrations)

  • 최영휴;최응영;김규탁
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.97-102
    • /
    • 2005
  • This paper presents feed rate optimizaton of a PMLSM driven feed-slide for mininum vibrations by smoothing velocity curve with finite jerk. First of all, the PMLSM was designed and made to reduce detent force. Next, a PMLSM driven feed-slide system was mathematically modeled as a 4-degree-of-freedom lumped parameter model. The key idea of our vibration minimization method is to find out the most appropriate smooth velocity curve with finite jerk. The validity of our proposed method has been verified by comparing computer simulation results of the feed-slide model with experimental ones.

  • PDF

경사안내면 상에서 이송되는 볼나사-슬라이드 이송계의 마찰기인 진동해석 (Analysis of Friction-Induced Vibrations in a Ball Screw Driven Slide on Skewed Guideway)

  • 최영휴
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.88-98
    • /
    • 2014
  • A moving mass on a skewed linear guideway model to analyze the friction-induced stick-slip behavior of ball-screw-driven slides is proposed. To describe the friction force, a friction coefficient function is modelled as a third-order polynomial of the relative velocity between the slide mass and a guideway. A nonlinear differential equation of motion is derived and an approximate solution is obtained using a perturbation method for the amplitudes and base frequencies of both pure-slip and stick-slip oscillations. The results are presented with time responses, phase plots, and amplitude plots, which are compared adequately with those obtained by Runge Kutta 4th-order numerical integration, as long as the difference between the static and kinematic friction coefficients is small. However, errors in the results by the approximate solution increase and are not negligible if the difference between the friction coefficients exceeds approximately 40% of the static friction coefficient.