• Title/Summary/Keyword: Machine Security System

Search Result 410, Processing Time 0.022 seconds

Classes in Object-Oriented Modeling (UML): Further Understanding and Abstraction

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.139-150
    • /
    • 2021
  • Object orientation has become the predominant paradigm for conceptual modeling (e.g., UML), where the notions of class and object form the primitive building blocks of thought. Classes act as templates for objects that have attributes and methods (actions). The modeled systems are not even necessarily software systems: They can be human and artificial systems of many different kinds (e.g., teaching and learning systems). The UML class diagram is described as a central component of model-driven software development. It is the most common diagram in object-oriented models and used to model the static design view of a system. Objects both carry data and execute actions. According to some authorities in modeling, a certain degree of difficulty exists in understanding the semantics of these notions in UML class diagrams. Some researchers claim class diagrams have limited use for conceptual analysis and that they are best used for logical design. Performing conceptual analysis should not concern the ways facts are grouped into structures. Whether a fact will end up in the design as an attribute is not a conceptual issue. UML leads to drilling down into physical design details (e.g., private/public attributes, encapsulated operations, and navigating direction of an association). This paper is a venture to further the understanding of object-orientated concepts as exemplified in UML with the aim of developing a broad comprehension of conceptual modeling fundamentals. Thinging machine (TM) modeling is a new modeling language employed in such an undertaking. TM modeling interlaces structure (components) and actionality where actions infiltrate the attributes as much as the classes. Although space limitations affect some aspects of the class diagram, the concluding assessment of this study reveals the class description is a kind of shorthand for a richer sematic TM construct.

Why Should I Ban You! : X-FDS (Explainable FDS) Model Based on Online Game Payment Log (X-FDS : 게임 결제 로그 기반 XAI적용 이상 거래탐지 모델 연구)

  • Lee, Young Hun;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.25-38
    • /
    • 2022
  • With the diversification of payment methods and games, related financial accidents are causing serious problems for users and game companies. Recently, game companies have introduced an Fraud Detection System (FDS) for game payment systems to prevent financial incident. However, FDS is ineffective and cannot provide major evidence based on judgment results, as it requires constant change of detection patterns. In this paper, we analyze abnormal transactions among payment log data of real game companies to generate related features. One of the unsupervised learning models, Autoencoder, was used to build a model to detect abnormal transactions, which resulted in over 85% accuracy. Using X-FDS (Explainable FDS) with XAI-SHAP, we could understand that the variables with the highest explanation for anomaly detection were the amount of transaction, transaction medium, and the age of users. Based on X-FDS, we derive an improved detection model with an accuracy of 94% was finally derived by fine-tuning the importance of features that adversely affect the proposed model.

CNN-Based Malware Detection Using Opcode Frequency-Based Image (Opcode 빈도수 기반 악성코드 이미지를 활용한 CNN 기반 악성코드 탐지 기법)

  • Ko, Seok Min;Yang, JaeHyeok;Choi, WonJun;Kim, TaeGuen
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.933-943
    • /
    • 2022
  • As the Internet develops and the utilization rate of computers increases, the threats posed by malware keep increasing. This leads to the demand for a system to automatically analyzes a large amount of malware. In this paper, an automatic malware analysis technique using a deep learning algorithm is introduced. Our proposed method uses CNN (Convolutional Neural Network) to analyze the malicious features represented as images. To reflect semantic information of malware for detection, our method uses the opcode frequency data of binary for image generation, rather than using bytes of binary. As a result of the experiments using the datasets consisting of 20,000 samples, it was found that the proposed method can detect malicious codes with 91% accuracy.

Development of Return flow rate Prediction Algorithm with Data Variation based on LSTM (LSTM기반의 자료 변동성을 고려한 하천수 회귀수량 예측 알고리즘 개발연구)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.2
    • /
    • pp.45-56
    • /
    • 2022
  • The countermeasure for the shortage of water during dry season and drought period has not been considered with return flowrate in detail. In this study, the outflow of STP was predicted through a data-based machine learning model, LSTM. As the first step, outflow, inflow, precipitation and water elevation were utilized as input data, and the distribution of variance was additionally considered to improve the accuracy of the prediction. When considering the variability of the outflow data, the residual between the observed value and the distribution was assumed to be in the form of a complex trigonometric function and presented in the form of the optimal distribution of the outflow along with the theoretical probability distribution. It was apparently found that the degree of error was reduced when compared to the case not considering where the variance distribution. Therefore, it is expected that the outflow prediction model constructed in this study can be used as basic data for establishing an efficient river management system as more accurate prediction is possible.

LSTM based Supply Imbalance Detection and Identification in Loaded Three Phase Induction Motors

  • Majid, Hussain;Fayaz Ahmed, Memon;Umair, Saeed;Babar, Rustum;Kelash, Kanwar;Abdul Rafay, Khatri
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.147-152
    • /
    • 2023
  • Mostly in motor fault detection the instantaneous values 3 axis vibration and 3phase current in time domain are acquired and converted to frequency domain. Vibrations are more useful in diagnosing the mechanical faults and motor current has remained more useful in electrical fault diagnosis. With having some experience and knowledge on the behavior of acquired data the electrical and mechanical faults are diagnosed through signal processing techniques or combine machine learning and signal processing techniques. In this paper, a single-layer LSTM based condition monitoring system is proposed in which the instantaneous values of three phased motor current are firstly acquired in simulated motor in in health and supply imbalance conditions in each of three stator currents. The acquired three phase current in time domain is then used to train a LSTM network, which can identify the type of fault in electrical supply of motor and phase in which the fault has occurred. Experimental results shows that the proposed single layer LSTM algorithm can identify the electrical supply faults and phase of fault with an average accuracy of 88% based on the three phase stator current as raw data without any processing or feature extraction.

Counting and Localizing Occupants using IR-UWB Radar and Machine Learning

  • Ji, Geonwoo;Lee, Changwon;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • Localization systems can be used with various circumstances like measuring population movement and rescue technology, even in security technology (like infiltration detection system). Vision sensors such as camera often used for localization is susceptible with light and temperature, and can cause invasion of privacy. In this paper, we used ultra-wideband radar technology (which is not limited by aforementioned problems) and machine learning techniques to measure the number and location of occupants in other indoor spaces behind the wall. We used four different algorithms and compared their results, including extremely randomized tree for four different situations; detect the number of occupants in a classroom, split the classroom into 28 locations and check the position of occupant, select one out of the 28 locations, divide it into 16 fine-grained locations, and check the position of occupant, and checking the positions of two occupants (existing in different locations). Overall, four algorithms showed good results and we verified that detecting the number and location of occupants are possible with high accuracy using machine learning. Also we have considered the possibility of service expansion using the oneM2M standard platform and expect to develop more service and products if this technology is used in various fields.

A System for Recognizing Sunglasses and a Mask of an ATM User (현금 인출기 사용자의 선글라스 및 마스크 인식 시스템)

  • Lim, Dong-Ak;Ko, Jae-Pil
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.1
    • /
    • pp.34-43
    • /
    • 2008
  • This paper presents a system for recognizing sunglasses and a mask of an ATM (Automatic Teller Machine) user. The proposed system extracts firstly facial contour, then from this extraction results it estimates the regions of eyes and mouth. Finally, it recognizes sunglasses and a mouth using Histogram Indexing based on those regions. We adopt a face shape model to be able to extract facial contour and to estimate the regions of eyes and mouth when those regions are occluded by sunglasses and a mask. To improve the fitting accuracy of the shame model, we adopt 2-step face detection method and conduct fitting several times by varying the initial position of the model instance. To achieve a good performance of the face detection method based on a background model, we enable the system to automatically update the background model. In experiment, we present some experiments on setting parameters of the system with images taken from in our laboratory, and demonstrate the results of recognizing sunglasses and a mask.

  • PDF

Analysis of Return Current Effect for Track Circuit on Ho-Nam high Speed Line (고속열차 운행에 따른 호남고속철도 궤도회로 귀선전류 영향 분석)

  • Baek, Jong-hyen
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1110-1116
    • /
    • 2017
  • Depending on the operating characteristics, track circuit is installed for the purpose of direct or indirect control of the signal device, point switch machine and other security device. These are mainly used for train detection, transmission of information, broken rail detection and transmission of return current. Especially, the return current is related to signal system, power system and catenary line, and track circuit systems. It is one of the most important component shall be dealt for the safety of track side staff and for the protection of railway-related electrical system according to electrification. Therefore, an accurate analysis of the return current is needed to prevent the return current unbalance and the system induced disorder and failure due to an over current condition. Also, if the malfunction occurred by the return current harmonics, it can cause problems including train operation interruption. In this paper, we presented measurement and analysis method at return current and it's harmonics by high speed train operation on the honam high speed line.

Feasibility of Using Similar Electrocardiography Measured around the Ears to Develop a Personal Authentication System (귀 주변에서 측정한 유사 심전도 기반 개인 인증 시스템 개발 가능성)

  • Choi, Ga-Young;Park, Jong-Yoon;Kim, Da-Yeong;Kim, Yeonu;Lim, Ji-Heon;Hwang, Han-Jeong
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.42-47
    • /
    • 2020
  • A personal authentication system based on biosignals has received increasing attention due to its relatively high security as compared to traditional authentication systems based on a key and password. Electrocardiography (ECG) measured from the chest or wrist is one of the widely used biosignals to develop a personal authentication system. In this study, we investigated the feasibility of using similar ECG measured behind the ears to develop a personal authentication system. To this end, similar ECGs were measured from thirty subjects using a pair of three electrodes attached behind each of the ears during resting state during which the standard Lead-I ECG was also simultaneously measured from both wrists as baseline ECG. The three ECG components, Q, R, and S, were extracted for each subject as classification features, and authentication accuracy was estimated using support vector machine (SVM) based on a 5×5-fold cross-validation. The mean authentication accuracies of Lead I-ECG and similar ECG were 90.41 ± 8.26% and 81.15 ± 7.54%, respectively. Considering a chance level of 3.33% (=1/30), the mean authentication performance of similar ECG could demonstrate the feasibility of using similar ECG measured behind the ears on the development of a personal authentication system.

Network separation construction method using network virtualization (네트워크 가상화를 이용한 망 분리 구축 방법)

  • Hwang, Seong-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1071-1076
    • /
    • 2020
  • The importance of network separation is due to the use of the Internet with existing business PCs, resulting in an internal information leakage event, and an environment configured to allow servers to access the Internet, which causes service failures with malicious code. In order to overcome this problem, it is necessary to use network virtualization to separate networks and network interconnection systems. Therefore, in this study, the construction area was constructed into the network area for the Internet and the server farm area for the virtualization system, and then classified and constructed into the security system area and the data link system area between networks. In order to prove the excellence of the proposed method, a network separation construction study using network virtualization was conducted based on the basis of VM Density's conservative estimates of program loads and LOBs.