• Title/Summary/Keyword: Machine Parts

Search Result 1,299, Processing Time 0.03 seconds

The Development of Micro Milling Machine for Micro Machining (미소가공을 위한 마이크로 밀링머신 개발)

  • Hwang Joon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.278-281
    • /
    • 2005
  • Today, manufacturing capability at the micro or nano scale production field is requested strongly in view of parts and product miniaturization. Miniaturized parts and products will introduce lots of benefits in terms of high precision functionality and low energy consumption. This paper presents the results of micro milling machine tool development for micro machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Performance evaluation through machining has been tested and discussed for achievable machining characteristics.

  • PDF

Development of CNC machine Pre-processor for temperature compensation (CNC공작기계의 온도차보정을 위한 Pre-Processor개발)

  • Shin, Hyun-Myung;Im, Moon-Hyuk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.601-611
    • /
    • 1998
  • The machining accuracy of CNC machine tools will decrease the production lead time because the coordinate compensation of the tool path will be unnecessary to meet design specifications. Improving the accuracy of machined parts enhances the reliability and functionality of the assembly as well as the life of the product. Among various factors affecting the accuracy of machined parts, the ambient temperature is the major factor that refers to the temperature surrounding the machine and workpiece. In this study, an experiment was conducted to confirm the dimensional variations caused by changes in the ambient temperature. The ambient temperature resulted in overcutting when it increased. A developed pre-processor converts the CNC program to compensate the dimensional variations caused by temperature changes. This methodology can be used to determine the machining accuracy and improve the positioning accuracy of a machine tool.

  • PDF

An Ensemble Model for Machine Failure Prediction (앙상블 모델 기반의 기계 고장 예측 방법)

  • Cheon, Kang Min;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • There have been a lot of studies in the past for the method of predicting the failure of a machine, and recently, a lot of researches and applications have been generated to diagnose the physical condition of the machine and the parts and to calculate the remaining life through various methods. Survival models are also used to predict plant failures based on past anomaly cycles. In particular, special machine that reflect the fluid flow and process characteristics of chemical plants are connected to hundreds or thousands of sensors, so there are not many factors that need to be considered, such as process and material data as well as application of derivative variables. In this paper, the data were preprocessed through time series anomaly detection based on unsupervised learning to predict the abnormalities of these special machine. Next, clustering results reflecting clustering-based data characteristics were applied to produce additional variables, and a learning data set was created based on the history of past facility abnormalities. Finally, the prediction methodology based on the supervised learning algorithm was applied, and the model update was confirmed to improve the accuracy of the prediction of facility failure. Through this, it is expected to improve the efficiency of facility operation by flexibly replacing the maintenance time and parts supply and demand by predicting abnormalities of machine and extracting key factors.

설비진단기술을 이용한 CBM 활용에 관한 연구

  • Gang In-Seon
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.403-412
    • /
    • 2002
  • Machine condition diagnosis is the technique to perceive the machine errors and the abrasion online without overhaul. We need the steps to predict the life span and reliability of a machine for the abrasion as with perceiving the degree of the abrasion of certain machine parts to make errors. In this study we deals with the methods to check and manage periodically and to configure the judgement criteria for the state of a machine. For the applications of CDT(Condition Diagnosis Technique) we also suggest the methods to check comparing the measured vibration values with the absolute criteria and to check the abnormality by vibration level.

  • PDF

Machine-Part Grouping Algorithm for the Bottleneck Machine Problem (애로기계가 존재하는 기계-부품 그룹형성 문제에 대한 해법)

  • 박수관;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.1-7
    • /
    • 1996
  • The grouping of parts into families and machines into cells poses an important problem for the improvement of productivity and quality in the design and planning of the flexible manufacturing system(FMS). This paper proposes a new algorithm of forming machine-part groups in case of the bottleneck machine problem and shows the numerical example. This algorithm could be applied to the large scale machine-part grouping problem.

  • PDF

The Formation and Crystallization of Amorphous Ti50Cu50Ni20Al10 Powder Prepared by High-Energy Ball Milling

  • Viet, Nguyen Hoang;Kim, Jin-Chun;Kim, Ji-Soon;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Amorphization and crystallization behaviors of $Ti_{50}Cu_{50}Ni_{20}Al_{10}$ powders during high-energy ball milling and subsequent heat treatment were studied. Full amorphization obtained after milling for 30 h was confirmed by X-ray diffraction and transmission electron microscope. The morphology of powders prepared using different milling times was observed by field-emission scanning electron microscope. The powders developed a fine, layered, homogeneous structure with prolonged milling. The crystallization behavior showed that the glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 691,771 and 80 K, respectively. The isothermal transformation kinetics was analyzed by the John-Mehn-Avrami equation. The Avrami exponent was close to 2.5, which corresponds to the transformation process with a diffusion-controlled type at nearly constant nucleation rate. The activation energy of crystallization for the alloy in the isothermal annealing process calculated using an Arrhenius plot was 345 kJ/mol.

Relationship between Replication and Structure of Micro/Nano Molded Parts

  • Ito, Hiroshi;Kazama, Kunihiko;Kikutani, Takeshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.368-368
    • /
    • 2006
  • Micro-molded parts can be defined as parts with microgram weight, parts with micro-structured surface, and parts with micro-precision. In this study, various micro-scale molded parts for various polymers were produced by using a precision micro-molding machine. Molded parts with nano-structure surface were also produced to analyze the effect of molding conditions on replication of surface pattern and higher-order structure development of molded parts. Replication of molded parts was influenced by material properties, molding conditions and size of surface pattern. Higher-order structure of molded parts was investigated by using polarized microscope. Skin-shear-core regions inside the molded parts were observed and shear region affected to surface replication.

  • PDF