• Title/Summary/Keyword: Machine Learning SVM

Search Result 625, Processing Time 0.028 seconds

Comparison Thai Word Sense Disambiguation Method

  • Modhiran, Teerapong;Kruatrachue, Boontee;Supnithi, Thepchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1307-1312
    • /
    • 2004
  • Word sense disambiguation is one of the most important problems in natural language processing research topics such as information retrieval and machine translation. Many approaches can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledge-based, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy. The purpose of this paper is to compare three famous machine learning techniques, Snow, SVM and Naive Bayes in Word-Sense Disambiguation on Thai language. 10 ambiguous words are selected to test with word and POS features. The results show that SVM algorithm gives the best results in solving of Thai WSD and the accuracy rate is approximately 83-96%.

  • PDF

A Proposal of Motion Recognition-based Video Search System using Machine Learning (기계학습을 이용한 동작인식 동영상 검색시스템 제안)

  • Seo, Won-Seoung;Lee, Kang-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.463-464
    • /
    • 2019
  • 본 논문은 기계학습을 기반으로 아두이노와 시리얼통신을 통한 사용자의 동작인식을 이용해 보다 간단하게 인터넷상의 원하는 동영상을 찾을 수 있는 검색시스템을 제작하고자 하였다. 이 검색시스템은 Python을 기반으로 SVM(Support Vector Machine)을 이용한 패턴 분류를 사용하였으며 이를 통해 사용자의 동작을 입력받아 문자를 예측 할 수 있다. 사용자는 이 검색시스템을 사용하기 위하여 우선 문자에 대한 사용자의 동작입력을 통해 학습 데이터 셋을 만들어야 하며 그것을 SVM을 이용하여 학습 모델과 식별자를 만들고, 만들어진 분류기를 통하여 동작인식을 바탕으로 문자의 결과를 예측 할 수 있다. 최종적으로 사용자의 동작인식을 거쳐 만들어진 문자열을 이용해 인터넷 동영상 사이트인 Youtube를 통해 웹 크롤링하여 문자열과 관련 있는 동영상을 찾아준다.

  • PDF

Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines

  • Kurtoglu, Ahmet Emin
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Steel girders are the structural members often used for passing long spans. Mostly being subjected to patch loading, or concentrated loading, steel girders are likely to face sudden deformation or damage e.g., web breathing. Horizontal or vertical stiffeners are employed to overcome this phenomenon. This study aims at assessing the feasibility of a machine learning method, namely the support vector machines (SVM) in predicting the patch loading resistance of longitudinally stiffened webs. A database consisting of 162 test data is utilized to develop SVM models and the model with best performance is selected for further inspection. Existing formulations proposed by other researchers are also investigated for comparison. BS5400 and other existing models (model I, model II and model III) appear to yield underestimated predictions with a large scatter; i.e., mean experimental-to-predicted ratios of 1.517, 1.092, 1.155 and 1.256, respectively; whereas the selected SVM model has high prediction accuracy with significantly less scatter. Robust nature and accurate predictions of SVM confirms its feasibility of potential use in solving complex engineering problems.

Academic Registration Text Classification Using Machine Learning

  • Alhawas, Mohammed S;Almurayziq, Tariq S
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.93-96
    • /
    • 2022
  • Natural language processing (NLP) is utilized to understand a natural text. Text analysis systems use natural language algorithms to find the meaning of large amounts of text. Text classification represents a basic task of NLP with a wide range of applications such as topic labeling, sentiment analysis, spam detection, and intent detection. The algorithm can transform user's unstructured thoughts into more structured data. In this work, a text classifier has been developed that uses academic admission and registration texts as input, analyzes its content, and then automatically assigns relevant tags such as admission, graduate school, and registration. In this work, the well-known algorithms support vector machine SVM and K-nearest neighbor (kNN) algorithms are used to develop the above-mentioned classifier. The obtained results showed that the SVM classifier outperformed the kNN classifier with an overall accuracy of 98.9%. in addition, the mean absolute error of SVM was 0.0064 while it was 0.0098 for kNN classifier. Based on the obtained results, the SVM is used to implement the academic text classification in this work.

Speech Emotion Recognition with SVM, KNN and DSVM

  • Hadhami Aouani ;Yassine Ben Ayed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.40-48
    • /
    • 2023
  • Speech Emotions recognition has become the active research theme in speech processing and in applications based on human-machine interaction. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: the first one is extracting only 13 Mel-frequency Cepstral Coefficient (MFCC) from emotional speech samples and the second one is applying features fusions between the three features: Zero Crossing Rate (ZCR), Teager Energy Operator (TEO), and Harmonic to Noise Rate (HNR) and MFCC features. Secondly, we use two types of classification techniques which are: the Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) to show the performance between them. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning. A large set of experiments are conducted on Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of our experiments showed given good accuracy compared with the previous studies.

A Comparative Study on Collision Detection Algorithms based on Joint Torque Sensor using Machine Learning (기계학습을 이용한 Joint Torque Sensor 기반의 충돌 감지 알고리즘 비교 연구)

  • Jo, Seonghyeon;Kwon, Wookyong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.

Detection of Surface Water Bodies in Daegu Using Various Water Indices and Machine Learning Technique Based on the Landsat-8 Satellite Image (Landsat-8 위성영상 기반 수분지수 및 기계학습을 활용한 대구광역시의 지표수 탐지)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, In-Sun;CHUNG, Youn-In
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Detection of surface water features including river, wetland, reservoir from the satellite imagery can be utilized for sustainable management and survey of water resources. This research compared the water indices derived from the multispectral bands and the machine learning technique for detecting the surface water features from he Landsat-8 satellite image acquired in Daegu through the following steps. First, the NDWI(Normalized Difference Water Index) image and the MNDWI(Modified Normalized Difference Water Index) image were separately generated using the multispectral bands of the given Landsat-8 satellite image, and the two binary images were generated from these NDWI and MNDWI images, respectively. Then SVM(Support Vector Machine), the widely used machine learning techniques, were employed to generate the land cover image and the binary image was also generated from the generated land cover image. Finally the error matrices were used for measuring the accuracy of the three binary images for detecting the surface water features. The statistical results showed that the binary image generated from the MNDWI image(84%) had the relatively low accuracy than the binary image generated from the NDWI image(94%) and generated by SVM(96%). And some misclassification errors occurred in all three binary images where the land features were misclassified as the surface water features because of the shadow effects.

Development of benthic macroinvertebrate species distribution models using the Bayesian optimization (베이지안 최적화를 통한 저서성 대형무척추동물 종분포모델 개발)

  • Go, ByeongGeon;Shin, Jihoon;Cha, Yoonkyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.259-275
    • /
    • 2021
  • This study explored the usefulness and implications of the Bayesian hyperparameter optimization in developing species distribution models (SDMs). A variety of machine learning (ML) algorithms, namely, support vector machine (SVM), random forest (RF), boosted regression tree (BRT), XGBoost (XGB), and Multilayer perceptron (MLP) were used for predicting the occurrence of four benthic macroinvertebrate species. The Bayesian optimization method successfully tuned model hyperparameters, with all ML models resulting an area under the curve (AUC) > 0.7. Also, hyperparameter search ranges that generally clustered around the optimal values suggest the efficiency of the Bayesian optimization in finding optimal sets of hyperparameters. Tree based ensemble algorithms (BRT, RF, and XGB) tended to show higher performances than SVM and MLP. Important hyperparameters and optimal values differed by species and ML model, indicating the necessity of hyperparameter tuning for improving individual model performances. The optimization results demonstrate that for all macroinvertebrate species SVM and RF required fewer numbers of trials until obtaining optimal hyperparameter sets, leading to reduced computational cost compared to other ML algorithms. The results of this study suggest that the Bayesian optimization is an efficient method for hyperparameter optimization of machine learning algorithms.

Study of oversampling algorithms for soil classifications by field velocity resistivity probe

  • Lee, Jong-Sub;Park, Junghee;Kim, Jongchan;Yoon, Hyung-Koo
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.247-258
    • /
    • 2022
  • A field velocity resistivity probe (FVRP) can measure compressional waves, shear waves and electrical resistivity in boreholes. The objective of this study is to perform the soil classification through a machine learning technique through elastic wave velocity and electrical resistivity measured by FVRP. Field and laboratory tests are performed, and the measured values are used as input variables to classify silt sand, sand, silty clay, and clay-sand mixture layers. The accuracy of k-nearest neighbors (KNN), naive Bayes (NB), random forest (RF), and support vector machine (SVM), selected to perform classification and optimize the hyperparameters, is evaluated. The accuracies are calculated as 0.76, 0.91, 0.94, and 0.88 for KNN, NB, RF, and SVM algorithms, respectively. To increase the amount of data at each soil layer, the synthetic minority oversampling technique (SMOTE) and conditional tabular generative adversarial network (CTGAN) are applied to overcome imbalance in the dataset. The CTGAN provides improved accuracy in the KNN, NB, RF and SVM algorithms. The results demonstrate that the measured values by FVRP can classify soil layers through three kinds of data with machine learning algorithms.

Sentimental Analysis of Twitter Data Using Machine Learning and Deep Learning: Nickel Ore Export Restrictions to Europe Under Jokowi's Administration 2022

  • Sophiana Widiastutie;Dairatul Maarif;Adinda Aulia Hafizha
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.400-420
    • /
    • 2024
  • Nowadays, social media has evolved into a powerful networked ecosystem in which governments and citizens publicly debate economic and political issues. This holds true for the pros and cons of Indonesia's ore nickel export restriction to Europe, which we aim to investigate further in this paper. Using Twitter as a dependable channel for conducting sentiment analysis, we have gathered 7070 tweets data for further processing using two sentiment analysis approaches, namely Support Vector Machine (SVM) and Long Short Term Memory (LSTM). Model construction stage has shown that Bidirectional LSTM performed better than LSTM and SVM kernels, with accuracy of 91%. The LSTM comes second and The SVM Radial Basis Function comes third in terms of best model, with 88% and 83% accuracies, respectively. In terms of sentiments, most Indonesians believe that the nickel ore provision will have a positive impact on the mining industry in Indonesia. However, a small number of Indonesian citizens contradict this policy due to fears of a trade dispute that could potentially harm Indonesia's bilateral relations with the EU. Hence, this study contributes to the advancement of measuring public opinions through big data tools by identifying Bidirectional LSTM as the optimal model for the dataset.