• 제목/요약/키워드: Machine Learning Algorithm

검색결과 1,526건 처리시간 0.026초

인공지지체 불량 분류를 위한 기계 학습 알고리즘 성능 비교에 관한 연구 (A Study on Performance Comparison of Machine Learning Algorithm for Scaffold Defect Classification)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.77-81
    • /
    • 2020
  • In this paper, we create scaffold defect classification models using machine learning based data. We extract the characteristic from collected scaffold external images using USB camera. SVM, KNN, MLP algorithm of machine learning was using extracted features. Classification models of three type learned using train dataset. We created scaffold defect classification models using test dataset. We quantified the performance of defect classification models. We have confirmed that the SVM accuracy is 95%. So the best performance model is using SVM.

비행데이터를 활용한 머신러닝 기반 비행착각 탐지 알고리즘 성능 분석 (Performance Analysis of Machine Learning Based Spatial Disorientation Detection Algorithm Using Flight Data)

  • Yim Se-Hoon;Park Chul;Cho Young jin
    • 한국항행학회논문지
    • /
    • 제27권4호
    • /
    • pp.391-395
    • /
    • 2023
  • Helicopter accidents due to spatial disorientation in low visibility conditions continue to persist as a major issue. These incidents often stem from human error, typically induced by stress, and frequently result in fatal outcomes. This study employs machine learning to analyze flight data and evaluate the efficacy of a flight illusion detection algorithm, laying groundwork for further research. This study collected flight data from approximately 20 pilots using a simulated flight training device to construct a range of flight scenarios. These scenarios included three stages of flight: ascending, level, and descent, and were further categorized into good visibility conditions and 0-mile visibility conditions. The aim was to investigate the occurrence of flight illusions under these conditions. From the extracted data, we obtained a total of 54,000 time-series data points, sampled five times per second. These were then analyzed using a machine learning approach.

Machine Learning based Prediction of The Value of Buildings

  • Lee, Woosik;Kim, Namgi;Choi, Yoon-Ho;Kim, Yong Soo;Lee, Byoung-Dai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3966-3991
    • /
    • 2018
  • Due to the lack of visualization services and organic combinations between public and private buildings data, the usability of the basic map has remained low. To address this issue, this paper reports on a solution that organically combines public and private data while providing visualization services to general users. For this purpose, factors that can affect building prices first were examined in order to define the related data attributes. To extract the relevant data attributes, this paper presents a method of acquiring public information data and real estate-related information, as provided by private real estate portal sites. The paper also proposes a pretreatment process required for intelligent machine learning. This report goes on to suggest an intelligent machine learning algorithm that predicts buildings' value pricing and future value by using big data regarding buildings' spatial information, as acquired from a database containing building value attributes. The algorithm's availability was tested by establishing a prototype targeting pilot areas, including Suwon, Anyang, and Gunpo in South Korea. Finally, a prototype visualization solution was developed in order to allow general users to effectively use buildings' value ranking and value pricing, as predicted by intelligent machine learning.

Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition

  • Ghimire, Deepak;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • 제10권3호
    • /
    • pp.443-458
    • /
    • 2014
  • An extreme learning machine (ELM) is a recently proposed learning algorithm for a single-layer feed forward neural network. In this paper we studied the ensemble of ELM by using a bagging algorithm for facial expression recognition (FER). Facial expression analysis is widely used in the behavior interpretation of emotions, for cognitive science, and social interactions. This paper presents a method for FER based on the histogram of orientation gradient (HOG) features using an ELM ensemble. First, the HOG features were extracted from the face image by dividing it into a number of small cells. A bagging algorithm was then used to construct many different bags of training data and each of them was trained by using separate ELMs. To recognize the expression of the input face image, HOG features were fed to each trained ELM and the results were combined by using a majority voting scheme. The ELM ensemble using bagging improves the generalized capability of the network significantly. The two available datasets (JAFFE and CK+) of facial expressions were used to evaluate the performance of the proposed classification system. Even the performance of individual ELM was smaller and the ELM ensemble using a bagging algorithm improved the recognition performance significantly.

FORECASTING GOLD FUTURES PRICES CONSIDERING THE BENCHMARK INTEREST RATES

  • Lee, Donghui;Kim, Donghyun;Yoon, Ji-Hun
    • 충청수학회지
    • /
    • 제34권2호
    • /
    • pp.157-168
    • /
    • 2021
  • This study uses the benchmark interest rate of the Federal Open Market Committee (FOMC) to predict gold futures prices. For the predictions, we used the support vector machine (SVM) (a machine-learning model) and the long short-term memory (LSTM) deep-learning model. We found that the LSTM method is more accurate than the SVM method. Moreover, we applied the Boruta algorithm to demonstrate that the FOMC benchmark interest rates correlate with gold futures.

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.

On successive machine learning process for predicting strength and displacement of rectangular reinforced concrete columns subjected to cyclic loading

  • Bu-seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.513-525
    • /
    • 2023
  • Recently, research on predicting the behavior of reinforced concrete (RC) columns using machine learning methods has been actively conducted. However, most studies have focused on predicting the ultimate strength of RC columns using a regression algorithm. Therefore, this study develops a successive machine learning process for predicting multiple nonlinear behaviors of rectangular RC columns. This process consists of three stages: single machine learning, bagging ensemble, and stacking ensemble. In the case of strength prediction, sufficient prediction accuracy is confirmed even in the first stage. In the case of displacement, although sufficient accuracy is not achieved in the first and second stages, the stacking ensemble model in the third stage performs better than the machine learning models in the first and second stages. In addition, the performance of the final prediction models is verified by comparing the backbone curves and hysteresis loops obtained from predicted outputs with actual experimental data.

기계학습을 이용한 다중물리해석 결과 예측 (Prediction of Multi-Physical Analysis Using Machine Learning)

  • 이근명;김기영;오웅;유성규;송병석
    • 전기전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.94-102
    • /
    • 2016
  • 본 논문에서는 기계학습 알고리즘을 이용하여 다중물리(Multi-physics) 시뮬레이션의 반복 횟수를 획기적으로 줄일 수 있는 다중물리해석 예측 방법을 제안한다. 기존의 다중물리해석 시뮬레이션의 경우 소요되는 시간과 노력을 줄이기 위해 시뮬레이션 자체에 대한 방법과 환경 개선에 초점이 맞추어져 있으나 본 논문에서는 다중물리 시뮬레이션 결과를 기계학습 알고리즘으로 학습하여 추가적인 시뮬레이션을 수행하지 않고 학습된 기계학습 알고리즘을 사용하여 수십분에서 수시간에 걸리는 다중 물리 해석과 유사한 결과를 수초 내에 예측할 수 있음을 보였다. 기계학습 알고리즘 간의 성능을 비교하여 다중물리해석에 적합한 기계학습 알고리즘을 확인하였으며 가장 우수한 성능을 보인 가우시안 프로세스 회귀(Gaussian Process Regression)의 경우 100개 이하의 학습 샘플만으로도 우수한 예측 결과를 얻어낼 수 있음을 확인하였다. 제안하는 방식을 통해 시뮬레이션을 하고자 하는 모델의 형상이나 재질이 변경될 경우 기존의 시뮬레이션 결과로 학습된 알고리즘이 있다면 시뮬레이션을 반복 수행하기 전에 알고리즘을 이용하여 결과를 예측할 수 있어 시뮬레이션의 반복 횟수를 줄일 수 있을 것으로 기대한다.

Analysis of Open-Source Hyperparameter Optimization Software Trends

  • Lee, Yo-Seob;Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.56-62
    • /
    • 2019
  • Recently, research using artificial neural networks has further expanded the field of neural network optimization and automatic structuring from improving inference accuracy. The performance of the machine learning algorithm depends on how the hyperparameters are configured. Open-source hyperparameter optimization software can be an important step forward in improving the performance of machine learning algorithms. In this paper, we review open-source hyperparameter optimization softwares.

기계학습을 활용한 이종망에서의 Wi-Fi 성능 개선 연구 동향 분석 (Research Trends in Wi-Fi Performance Improvement in Coexistence Networks with Machine Learning)

  • 강영명
    • Journal of Platform Technology
    • /
    • 제10권3호
    • /
    • pp.51-59
    • /
    • 2022
  • 최근 혁신적으로 발전하고 있는 기계학습은 다양한 최적화 문제를 해결할 수 있는 중요한 기술이 되었다. 본 논문에서는 기계학습을 활용하여 이종망의 채널 공용화 문제를 해결하는 최신 연구 논문들을 소개하고 주된 기술의 특성을 분석하여 향후 연구 방향에 대해 가이드를 제시한다. 기존 연구들은 대체로 온라인 및 오프라인으로 빠른 학습이 가능한 Q-learning을 활용하는 경우가 많았다. 반면 다양한 공존 시나리오를 고려하지 않거나 망 성능에 큰 영향을 줄 수 있는 기계학습 컨트롤러의 위치에 대한 고려는 제한적이었다. 이런 단점을 극복할 수 있는 유력한 방안으로는 ITU에서 제안한 기계학습용 논리적 망구조를 기반으로 망 환경 변화에 따라 기계학습 알고리즘을 선택적으로 사용할 수 있는 방법이 있다.