• Title/Summary/Keyword: Machine Learning Algorithm

Search Result 1,508, Processing Time 0.026 seconds

Classification Model of Types of Crime based on Random-Forest Algorithms and Monitoring Interface Design Factors for Real-time Crime Prediction (실시간 범죄 예측을 위한 랜덤포레스트 알고리즘 기반의 범죄 유형 분류모델 및 모니터링 인터페이스 디자인 요소 제안)

  • Park, Joonyoung;Chae, Myungsu;Jung, Sungkwan
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.9
    • /
    • pp.455-460
    • /
    • 2016
  • Recently, with more severe types felonies such as robbery and sexual violence, the importance of crime prediction and prevention is emphasized. For accurate and prompt crime prediction and prevention, both a classification model of crime with high accuracy based on past criminal records and well-designed system interface are required. However previous studies on the analysis of crime factors have limitations in terms of accuracy due to the difficulty of data preprocessing. In addition, existing crime monitoring systems merely offer a vast amount of crime analysis results, thereby they fail to provide users with functions for more effective monitoring. In this paper, we propose a classification model for types of crime based on random-forest algorithms and system design factors for real-time crime prediction. From our experiments, we proved that our proposed classification model is superior to others that only use criminal records in terms of accuracy. Through the analysis of existing crime monitoring systems, we also designed and developed a system for real-time crime monitoring.

Automatic Construction of a Negative/positive Corpus and Emotional Classification using the Internet Emotional Sign (인터넷 감정기호를 이용한 긍정/부정 말뭉치 구축 및 감정분류 자동화)

  • Jang, Kyoungae;Park, Sanghyun;Kim, Woo-Je
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.512-521
    • /
    • 2015
  • Internet users purchase goods on the Internet and express their positive or negative emotions of the goods in product reviews. Analysis of the product reviews become critical data to both potential consumers and to the decision making of enterprises. Therefore, the importance of opinion mining techniques which derive opinions by analyzing meaningful data from large numbers of Internet reviews. Existing studies were mostly based on comments written in English, yet analysis in Korean has not actively been done. Unlike English, Korean has characteristics of complex adjectives and suffixes. Existing studies did not consider the characteristics of the Internet language. This study proposes an emotional classification method which increases the accuracy of emotional classification by analyzing the characteristics of the Internet language connoting feelings. We can classify positive and negative comments about products automatically using the Internet emoticon. Also we can check the validity of the proposed algorithm through the result of high precision, recall and coverage for the evaluation of this method.

Evaluating the bond strength of FRP in concrete samples using machine learning methods

  • Gao, Juncheng;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Ghabussi, Aria;Baharom, Shahrizan;Morasaei, Armin;Shariati, Ali;Khorami, Majid;Zhou, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.403-418
    • /
    • 2020
  • In recent years, the use of Fiber Reinforced Polymers (FRPs) as one of the most common ways to increase the strength of concrete samples, has been introduced. Evaluation of the final strength of these specimens is performed with different experimental methods. In this research, due to the variety of models, the low accuracy and impact of different parameters, the use of new intelligence methods is considered. Therefore, using artificial intelligent-based models, a new solution for evaluating the bond strength of FRP is presented in this paper. 150 experimental samples were collected from previous studies, and then two new hybrid models of Imperialist Competitive Algorithm (ICA)-Artificial Neural Network (ANN) and Artificial Bee Colony (ABC)-ANN were developed. These models were evaluated using different performance indices and then, a comparison was made between the developed models. The results showed that the ICA-ANN model's ability to predict the bond strength of FRP is higher than the ABC-ANN model. Finally, to demonstrate the capabilities of this new model, a comparison was made between the five experimental models and the results were presented for all data. This comparison showed that the new model could offer better performance. It is concluded that the proposed hybrid models can be utilized in the field of this study as a suitable substitute for empirical models.

Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping (퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection)

  • Roh, Seok-Beom;Kim, Yong Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.646-650
    • /
    • 2014
  • In this paper, in order to avoid the deterioration of the pattern classification performance which results from the curse of dimensionality, we propose a new feature selection method. The newly proposed feature selection method is based on Fuzzy C-Means clustering algorithm which analyzes the data points to divide them into several clusters and the concept of a function with fuzzy numbers. When it comes to the concept of a function where independent variables are fuzzy numbers and a dependent variable is a label of class, a fuzzy number should be related to the only one class label. Therefore, a good feature is a independent variable of a function with fuzzy numbers. Under this assumption, we calculate the goodness of each feature to pattern classification problem. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

A method of searching the optimum performance of a classifier by testing only the significant events (중요한 이벤트만을 검색함으로써 분류기의 최적 성능을 찾는 방법)

  • Kim, Dong-Hui;Lee, Won Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1275-1282
    • /
    • 2014
  • Too much information exists in ubiquitous environment, and therefore it is not easy to obtain the appropriately classified information from the available data set. Decision tree algorithm is useful in the field of data mining or machine learning system, as it is fast and deduces good result on the problem of classification. Sometimes, however, a decision tree may have leaf nodes which consist of only a few or noise data. The decisions made by those weak leaves will not be effective and therefore should be excluded in the decision process. This paper proposes a method using a classifier, UChoo, for solving a classification problem, and suggests an effective method of decision process involving only the important leaves and thereby excluding the noisy leaves. The experiment shows that this method is effective and reduces the erroneous decisions and can be applied when only important decisions should be made.

Activity Recognition of Workers and Passengers onboard Ships Using Multimodal Sensors in a Smartphone (선박 탑승자를 위한 다중 센서 기반의 스마트폰을 이용한 활동 인식 시스템)

  • Piyare, Rajeev Kumar;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.811-819
    • /
    • 2014
  • Activity recognition is a key component in identifying the context of a user for providing services based on the application such as medical, entertainment and tactical scenarios. Instead of applying numerous sensor devices, as observed in many previous investigations, we are proposing the use of smartphone with its built-in multimodal sensors as an unobtrusive sensor device for recognition of six physical daily activities. As an improvement to previous works, accelerometer, gyroscope and magnetometer data are fused to recognize activities more reliably. The evaluation indicates that the IBK classifier using window size of 2s with 50% overlapping yields the highest accuracy (i.e., up to 99.33%). To achieve this peak accuracy, simple time-domain and frequency-domain features were extracted from raw sensor data of the smartphone.

The Study of Patient Prediction Models on Flu, Pneumonia and HFMD Using Big Data (빅데이터를 이용한 독감, 폐렴 및 수족구 환자수 예측 모델 연구)

  • Yu, Jong-Pil;Lee, Byung-Uk;Lee, Cha-min;Lee, Ji-Eun;Kim, Min-sung;Hwang, Jae-won
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • In this study, we have developed a model for predicting the number of patients (flu, pneumonia, and outbreak) using Big Data, which has been mainly performed overseas. Existing patient number system by government adopt procedures that collects the actual number and percentage of patients from several big hospital. However, prediction model in this study was developed combing a real-time collection of disease-related words and various other climate data provided in real time. Also, prediction number of patients were counted by machine learning algorithm method. The advantage of this model is that if the epidemic spreads rapidly, the propagation rate can be grasped in real time. Also, we used a variety types of data to complement the failures in Google Flu Trends.

EEG Dimensional Reduction with Stack AutoEncoder for Emotional Recognition using LSTM/RNN (LSTM/RNN을 사용한 감정인식을 위한 스택 오토 인코더로 EEG 차원 감소)

  • Aliyu, Ibrahim;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.717-724
    • /
    • 2020
  • Due to the important role played by emotion in human interaction, affective computing is dedicated in trying to understand and regulate emotion through human-aware artificial intelligence. By understanding, emotion mental diseases such as depression, autism, attention deficit hyperactivity disorder, and game addiction will be better managed as they are all associated with emotion. Various studies for emotion recognition have been conducted to solve these problems. In applying machine learning for the emotion recognition, the efforts to reduce the complexity of the algorithm and improve the accuracy are required. In this paper, we investigate emotion Electroencephalogram (EEG) feature reduction and classification using Stack AutoEncoder (SAE) and Long-Short-Term-Memory/Recurrent Neural Networks (LSTM/RNN) classification respectively. The proposed method reduced the complexity of the model and significantly enhance the performance of the classifiers.

Feature-Strengthened Gesture Recognition Model Based on Dynamic Time Warping for Multi-Users (다중 사용자를 위한 Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델)

  • Lee, Suk Kyoon;Um, Hyun Min;Kwon, Hyuck Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.10
    • /
    • pp.503-510
    • /
    • 2016
  • FsGr model, which has been proposed recently, is an approach of accelerometer-based gesture recognition by applying DTW algorithm in two steps, which improved recognition success rate. In FsGr model, sets of similar gestures will be produced through training phase, in order to define the notion of a set of similar gestures. At the 1st attempt of gesture recognition, if the result turns out to belong to a set of similar gestures, it makes the 2nd recognition attempt to feature-strengthened parts extracted from the set of similar gestures. However, since a same gesture show drastically different characteristics according to physical traits such as body size, age, and sex, FsGr model may not be good enough to apply to multi-user environments. In this paper, we propose FsGrM model that extends FsGr model for multi-user environment and present a program which controls channel and volume of smart TV using FsGrM model.

Design of Regression Model and Pattern Classifier by Using Principal Component Analysis (주성분 분석법을 이용한 회귀다항식 기반 모델 및 패턴 분류기 설계)

  • Roh, Seok-Beom;Lee, Dong-Yoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.594-600
    • /
    • 2017
  • The new design methodology of prediction model and pattern classification, which is based on the dimension reduction algorithm called principal component analysis, is introduced in this paper. Principal component analysis is one of dimension reduction techniques which are used to reduce the dimension of the input space and extract some good features from the original input variables. The extracted input variables are applied to the prediction model and pattern classifier as the input variables. The introduced prediction model and pattern classifier are based on the very simple regression which is the key point of the paper. The structural simplicity of the prediction model and pattern classifier leads to reducing the over-fitting problem. In order to validate the proposed prediction model and pattern classifier, several machine learning data sets are used.