• Title/Summary/Keyword: Machine Learning & Training

Search Result 809, Processing Time 0.028 seconds

Using Machine Learning Algorithms for Housing Price Prediction: The Case of Islamabad Housing Data

  • Imran, Imran;Zaman, Umar;Waqar, Muhammad;Zaman, Atif
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2021
  • House price prediction is a significant financial decision for individuals working in the housing market as well as for potential buyers. From investment to buying a house for residence, a person investing in the housing market is interested in the potential gain. This paper presents machine learning algorithms to develop intelligent regressions models for House price prediction. The proposed research methodology consists of four stages, namely Data Collection, Pre Processing the data collected and transforming it to the best format, developing intelligent models using machine learning algorithms, training, testing, and validating the model on house prices of the housing market in the Capital, Islamabad. The data used for model validation and testing is the asking price from online property stores, which provide a reasonable estimate of the city housing market. The prediction model can significantly assist in the prediction of future housing prices in Pakistan. The regression results are encouraging and give promising directions for future prediction work on the collected dataset.

Single Antenna Based GPS Signal Reception Condition Classification Using Machine Learning Approaches

  • Sanghyun Kim;Seunghyeon Park;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2023
  • In urban areas it can be difficult to utilize global navigation satellite systems (GNSS) due to signal reflections and blockages. It is thus crucial to detect reflected or blocked signals because they lead to significant degradation of GNSS positioning accuracy. In a previous study, a classifier for global positioning system (GPS) signal reception conditions was developed using three features and the support vector machine (SVM) algorithm. However, this classifier had limitations in its classification performance. Therefore, in this study, we developed an improved machine learning based method of classifying GPS signal reception conditions by including an additional feature with the existing features. Furthermore, we applied various machine learning classification algorithms. As a result, when tested with datasets collected in different environments than the training environment, the classification accuracy improved by nine percentage points compared to the existing method, reaching up to 58%.

An Improved Co-training Method without Feature Split (속성분할이 없는 향상된 협력학습 방법)

  • 이창환;이소민
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1259-1265
    • /
    • 2004
  • In many applications, producing labeled data is costly and time consuming while an enormous amount of unlabeled data is available with little cost. Therefore, it is natural to ask whether we can take advantage of these unlabeled data in classification teaming. In machine learning literature, the co-training method has been widely used for this purpose. However, the current co-training method requires the entire features to be split into two independent sets. Therefore, in this paper, we improved the current co-training method in a number of ways, and proposed a new co-training method which do not need the feature split. Experimental results show that our proposed method can significantly improve the performance of the current co-training algorithm.

Study on Machine Learning Techniques for Malware Classification and Detection

  • Moon, Jaewoong;Kim, Subin;Song, Jaeseung;Kim, Kyungshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4308-4325
    • /
    • 2021
  • The importance and necessity of artificial intelligence, particularly machine learning, has recently been emphasized. In fact, artificial intelligence, such as intelligent surveillance cameras and other security systems, is used to solve various problems or provide convenience, providing solutions to problems that humans traditionally had to manually deal with one at a time. Among them, information security is one of the domains where the use of artificial intelligence is especially needed because the frequency of occurrence and processing capacity of dangerous codes exceeds the capabilities of humans. Therefore, this study intends to examine the definition of artificial intelligence and machine learning, its execution method, process, learning algorithm, and cases of utilization in various domains, particularly the cases and contents of artificial intelligence technology used in the field of information security. Based on this, this study proposes a method to apply machine learning technology to the method of classifying and detecting malware that has rapidly increased in recent years. The proposed methodology converts software programs containing malicious codes into images and creates training data suitable for machine learning by preparing data and augmenting the dataset. The model trained using the images created in this manner is expected to be effective in classifying and detecting malware.

Synthetic Training Data Generation for Fault Detection Based on Deep Learning (딥러닝 기반 탄성파 단층 해석을 위한 합성 학습 자료 생성)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.89-97
    • /
    • 2021
  • Fault detection in seismic data is well suited to the application of machine learning algorithms. Accordingly, various machine learning techniques are being developed. In recent studies, machine learning models, which utilize synthetic data, are the particular focus when training with deep learning. The use of synthetic training data has many advantages; Securing massive data for training becomes easy and generating exact fault labels is possible with the help of synthetic training data. To interpret real data with the model trained by synthetic data, the synthetic data used for training should be geologically realistic. In this study, we introduce a method to generate realistic synthetic seismic data. Initially, reflectivity models are generated to include realistic fault structures, and then, a one-way wave equation is applied to efficiently generate seismic stack sections. Next, a migration algorithm is used to remove diffraction artifacts and random noise is added to mimic actual field data. A convolutional neural network model based on the U-Net structure is used to verify the generated synthetic data set. From the results of the experiment, we confirm that realistic synthetic data effectively creates a deep learning model that can be applied to field data.

Analysis of Korean Language Parsing System and Speed Improvement of Machine Learning using Feature Module (한국어 의존 관계 분석과 자질 집합 분할을 이용한 기계학습의 성능 개선)

  • Kim, Seong-Jin;Ock, Cheol-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.66-74
    • /
    • 2014
  • Recently a variety of study of Korean parsing system is carried out by many software engineers and linguists. The parsing system mainly uses the method of machine learning or symbol processing paradigm. But the parsing system using machine learning has long training time because the data of Korean sentence is very big. And the system shows the limited recognition rate because the data has self error. In this thesis we design system using feature module which can reduce training time and analyze the recognized rate each the number of training sentences and repetition times. The designed system uses the separated modules and sorted table for binary search. We use the refined 36,090 sentences which is extracted by Sejong Corpus. The training time is decreased about three hours and the comparison of recognized rate is the highest as 84.54% when 10,000 sentences is trained 50 times. When all training sentence(32,481) is trained 10 times, the recognition rate is 82.99%. As a result it is more efficient that the system is used the refined data and is repeated the training until it became the steady state.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Autonomous-Driving Vehicle Learning Environments using Unity Real-time Engine and End-to-End CNN Approach (유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경)

  • Hossain, Sabir;Lee, Deok-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.122-130
    • /
    • 2019
  • Collecting a rich but meaningful training data plays a key role in machine learning and deep learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing open-source simulators which could be used for training self-driving vehicles. After reviewing the simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a synthetic simulator with various realistic situations and weather conditions which make the autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are made to calculate the parameters and training the model. From the simulator, the user can obtain data for the various situation and utilize it for the training purpose. Flexible options are available to choose sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a self-driving shuttle.

Comparison of theoretical and machine learning models to estimate gamma ray source positions using plastic scintillating optical fiber detector

  • Kim, Jinhong;Kim, Seunghyeon;Song, Siwon;Park, Jae Hyung;Kim, Jin Ho;Lim, Taeseob;Pyeon, Cheol Ho;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3431-3437
    • /
    • 2021
  • In this study, one-dimensional gamma ray source positions are estimated using a plastic scintillating optical fiber, two photon counters and via data processing with a machine learning algorithm. A nonlinear regression algorithm is used to construct a machine learning model for the position estimation of radioactive sources. The position estimation results of radioactive sources using machine learning are compared with the theoretical position estimation results based on the same measured data. Various tests at the source positions are conducted to determine the improvement in the accuracy of source position estimation. In addition, an evaluation is performed to compare the change in accuracy when varying the number of training datasets. The proposed one-dimensional gamma ray source position estimation system with plastic scintillating fiber using machine learning algorithm can be used as radioactive leakage scanners at disposal sites.

Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations (경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.