• Title/Summary/Keyword: Machine Learning & Training

Search Result 789, Processing Time 0.028 seconds

A Study on Identification of Track Irregularity of High Speed Railway Track Using an SVM (SVM을 이용한 고속철도 궤도틀림 식별에 관한 연구)

  • Kim, Ki-Dong;Hwang, Soon-Hyun
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.31-39
    • /
    • 2013
  • There are two methods to make a distinction of deterioration of high-speed railway track. One is that an administrator checks for each attribute value of track induction data represented in graph and determines whether maintenance is needed or not. The other is that an administrator checks for monthly trend of attribute value of the corresponding section and determines whether maintenance is needed or not. But these methods have a weak point that it takes longer times to make decisions as the amount of track induction data increases. As a field of artificial intelligence, the method that a computer makes a distinction of deterioration of high-speed railway track automatically is based on machine learning. Types of machine learning algorism are classified into four type: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. This research uses supervised learning that analogizes a separating function form training data. The method suggested in this research uses SVM classifier which is a main type of supervised learning and shows higher efficiency binary classification problem. and it grasps the difference between two groups of data and makes a distinction of deterioration of high-speed railway track.

  • PDF

Gradient Descent Training Method for Optimizing Data Prediction Models (데이터 예측 모델 최적화를 위한 경사하강법 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.305-312
    • /
    • 2022
  • In this paper, we focused on training to create and optimize a basic data prediction model. And we proposed a gradient descent training method of machine learning that is widely used to optimize data prediction models. It visually shows the entire operation process of gradient descent used in the process of optimizing parameter values required for data prediction models by applying the differential method and teaches the effective use of mathematical differentiation in machine learning. In order to visually explain the entire operation process of gradient descent, we implement gradient descent SW in a spreadsheet. In this paper, first, a two-variable gradient descent training method is presented, and the accuracy of the two-variable data prediction model is verified by comparison with the error least squares method. Second, a three-variable gradient descent training method is presented and the accuracy of a three-variable data prediction model is verified. Afterwards, the direction of the optimization practice for gradient descent was presented, and the educational effect of the proposed gradient descent method was analyzed through the results of satisfaction with education for non-majors.

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.

Musical Genre Classification Based on Deep Residual Auto-Encoder and Support Vector Machine

  • Xue Han;Wenzhuo Chen;Changjian Zhou
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

A Branch-and-Bound Algorithm for Finding an Optimal Solution of Transductive Support Vector Machines (Transductive SVM을 위한 분지-한계 알고리즘)

  • Park Chan-Kyoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.69-85
    • /
    • 2006
  • Transductive Support Vector Machine(TSVM) is one of semi-supervised learning algorithms which exploit the domain structure of the whole data by considering labeled and unlabeled data together. Although it was proposed several years ago, there has been no efficient algorithm which can handle problems with more than hundreds of training examples. In this paper, we propose an efficient branch-and-bound algorithm which can solve large-scale TSVM problems with thousands of training examples. The proposed algorithm uses two bounding techniques: min-cut bound and reduced SVM bound. The min-cut bound is derived from a capacitated graph whose cuts represent a lower bound to the optimal objective function value of the dual problem. The reduced SVM bound is obtained by constructing the SVM problem with only labeled data. Experimental results show that the accuracy rate of TSVM can be significantly improved by learning from the optimal solution of TSVM, rather than an approximated solution.

Performance analysis and comparison of various machine learning algorithms for early stroke prediction

  • Vinay Padimi;Venkata Sravan Telu;Devarani Devi Ningombam
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1007-1021
    • /
    • 2023
  • Stroke is the leading cause of permanent disability in adults, and it can cause permanent brain damage. According to the World Health Organization, 795 000 Americans experience a new or recurrent stroke each year. Early detection of medical disorders, for example, strokes, can minimize the disabling effects. Thus, in this paper, we consider various risk factors that contribute to the occurrence of stoke and machine learning algorithms, for example, the decision tree, random forest, and naive Bayes algorithms, on patient characteristics survey data to achieve high prediction accuracy. We also consider the semisupervised self-training technique to predict the risk of stroke. We then consider the near-miss undersampling technique, which can select only instances in larger classes with the smaller class instances. Experimental results demonstrate that the proposed method obtains an accuracy of approximately 98.83% at low cost, which is significantly higher and more reliable compared with the compared techniques.

Stress Identification and Analysis using Observed Heart Beat Data from Smart HRM Sensor Device

  • Pramanta, SPL Aditya;Kim, Myonghee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1395-1405
    • /
    • 2017
  • In this paper, we analyses heart beat data to identify subjects stress state (binary) using heart rate variability (HRV) features extracted from heart beat data of the subjects and implement supervised machine learning techniques to create the mental stress classifier. There are four steps need to be done: data acquisition, data processing (HRV analysis), features selection, and machine learning, before doing performance measurement. There are 56 features generated from the HRV Analysis module with several of them are selected (using own algorithm) after computing the Pearson Correlation Matrix (p-values). The results of the list of selected features compared with all features data are compared by its model error after training using several machine learning techniques: support vector machine, decision tree, and discriminant analysis. SVM model and decision tree model with using selected features shows close results compared to using all recording by only 1% difference. Meanwhile, the discriminant analysis differs about 5%. All the machine learning method used in this works have 90% maximum average accuracy.

SVM based Stock Price Forecasting Using Financial Statements (SVM 기반의 재무 정보를 이용한 주가 예측)

  • Heo, Junyoung;Yang, Jin Yong
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.167-172
    • /
    • 2015
  • Machine learning is a technique for training computers to be used in classification or forecasting. Among the various types, support vector machine (SVM) is a fast and reliable machine learning mechanism. In this paper, we evaluate the stock price predictability of SVM based on financial statements, through a fundamental analysis predicting the stock price from the corporate intrinsic values. Corporate financial statements were used as the input for SVM. Based on the results, the rise or drop of the stock was predicted. The SVM results were compared with the forecasts of experts, as well as other machine learning methods such as ANN, decision tree and AdaBoost. SVM showed good predictive power while requiring less execution time than the other machine learning schemes.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.