• Title/Summary/Keyword: Machine Learning & Training

Search Result 796, Processing Time 0.024 seconds

Impact of personal characteristics on learning performance in virtual reality-based construction safety training - Using machine learning and SHAP - (가상현실 기반 건설안전교육에서 개인특성이 학습성과에 미치는 영향 - 머신러닝과 SHAP을 활용하여 -)

  • Choi, Dajeong;Koo, Choongwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.3-11
    • /
    • 2023
  • To address the high accident rate in the construction industry, there is a growing interest in implementing virtual reality (VR)-based construction safety training. However, existing training approaches often failed to consider learners' individual characteristics, resulting in inadequate training for some individuals. This study aimed to investigate the impact of personal characteristics on learning performance in VR-based construction safety training using machine learning and SHAP (SHAPley Additional exPlanations). This study revealed that age exerted the greatest influence on learning performance, while work experience had the least impact. Furthermore, age exhibited a negative relationship with learning performance, indicating that the introduction of VR-based construction safety training can be effective for younger individuals. On the other hand, academic degree, qualifications, and work experience exhibited a positive relationship. To enhance learning performance for individuals with lower academic degree, it is necessary to provide content that is easier to understand. The lower qualifications and work experience have minimal impact on learning performance, so it is important to consider other learners' characteristics so as to provide appropriate educational content. This study confirmed that personal characteristics can significantly affect learning performance in VR-based construction safety training, highlighting the potential for leveraging these findings to provide effective safety training for construction workers.

Application of the machine learning technique for the development of a condensation heat transfer model for a passive containment cooling system

  • Lee, Dong Hyun;Yoo, Jee Min;Kim, Hui Yung;Hong, Dong Jin;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2297-2310
    • /
    • 2022
  • A condensation heat transfer model is essential to accurately predict the performance of the passive containment cooling system (PCCS) during an accident in an advanced light water reactor. However, most of existing models tend to predict condensation heat transfer very well for a specific range of thermal-hydraulic conditions. In this study, a new correlation for condensation heat transfer coefficient (HTC) is presented using machine learning technique. To secure sufficient training data, a large number of pseudo data were produced by using ten existing condensation models. Then, a neural network model was developed, consisting of a fully connected layer and a convolutional neural network (CNN) algorithm, DenseNet. Based on the hold-out cross-validation, the neural network was trained and validated against the pseudo data. Thereafter, it was evaluated using the experimental data, which were not used for training. The machine learning model predicted better results than the existing models. It was also confirmed through a parametric study that the machine learning model presents continuous and physical HTCs for various thermal-hydraulic conditions. By reflecting the effects of individual variables obtained from the parametric analysis, a new correlation was proposed. It yielded better results for almost all experimental conditions than the ten existing models.

Influence on overfitting and reliability due to change in training data

  • Kim, Sung-Hyeock;Oh, Sang-Jin;Yoon, Geun-Young;Jung, Yong-Gyu;Kang, Min-Soo
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.82-89
    • /
    • 2017
  • The range of problems that can be handled by the activation of big data and the development of hardware has been rapidly expanded and machine learning such as deep learning has become a very versatile technology. In this paper, mnist data set is used as experimental data, and the Cross Entropy function is used as a loss model for evaluating the efficiency of machine learning, and the value of the loss function in the steepest descent method is We applied the GradientDescentOptimize algorithm to minimize and updated weight and bias via backpropagation. In this way we analyze optimal reliability value corresponding to the number of exercises and optimal reliability value without overfitting. And comparing the overfitting time according to the number of data changes based on the number of training times, when the training frequency was 1110 times, we obtained the result of 92%, which is the optimal reliability value without overfitting.

Systematic Research on Privacy-Preserving Distributed Machine Learning (프라이버시를 보호하는 분산 기계 학습 연구 동향)

  • Min Seob Lee;Young Ah Shin;Ji Young Chun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.76-90
    • /
    • 2024
  • Although artificial intelligence (AI) can be utilized in various domains such as smart city, healthcare, it is limited due to concerns about the exposure of personal and sensitive information. In response, the concept of distributed machine learning has emerged, wherein learning occurs locally before training a global model, mitigating the concentration of data on a central server. However, overall learning phase in a collaborative way among multiple participants poses threats to data privacy. In this paper, we systematically analyzes recent trends in privacy protection within the realm of distributed machine learning, considering factors such as the presence of a central server, distribution environment of the training datasets, and performance variations among participants. In particular, we focus on key distributed machine learning techniques, including horizontal federated learning, vertical federated learning, and swarm learning. We examine privacy protection mechanisms within these techniques and explores potential directions for future research.

A Machine Learning-Based Vocational Training Dropout Prediction Model Considering Structured and Unstructured Data (정형 데이터와 비정형 데이터를 동시에 고려하는 기계학습 기반의 직업훈련 중도탈락 예측 모형)

  • Ha, Manseok;Ahn, Hyunchul
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • One of the biggest difficulties in the vocational training field is the dropout problem. A large number of students drop out during the training process, which hampers the waste of the state budget and the improvement of the youth employment rate. Previous studies have mainly analyzed the cause of dropouts. The purpose of this study is to propose a machine learning based model that predicts dropout in advance by using various information of learners. In particular, this study aimed to improve the accuracy of the prediction model by taking into consideration not only structured data but also unstructured data. Analysis of unstructured data was performed using Word2vec and Convolutional Neural Network(CNN), which are the most popular text analysis technologies. We could find that application of the proposed model to the actual data of a domestic vocational training institute improved the prediction accuracy by up to 20%. In addition, the support vector machine-based prediction model using both structured and unstructured data showed high prediction accuracy of the latter half of 90%.

Development of Flash Boiling Spray Prediction Model of Multi-hole GDI Injector Using Machine Learning (머신러닝을 이용한 다공형 GDI 인젝터의 플래시 보일링 분무 예측 모델 개발)

  • Chang, Mengzhao;Shin, Dalho;Pham, Quangkhai;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.

Comparative Application of Various Machine Learning Techniques for Lithology Predictions (다양한 기계학습 기법의 암상예측 적용성 비교 분석)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.21-34
    • /
    • 2016
  • In the present study, we applied various machine learning techniques comparatively for prediction of subsurface structures based on multiple secondary information (i.e., well-logging data). The machine learning techniques employed in this study are Naive Bayes classification (NB), artificial neural network (ANN), support vector machine (SVM) and logistic regression classification (LR). As an alternative model, conventional hidden Markov model (HMM) and modified hidden Markov model (mHMM) are used where additional information of transition probability between primary properties is incorporated in the predictions. In the comparisons, 16 boreholes consisted with four different materials are synthesized, which show directional non-stationarity in upward and downward directions. Futhermore, two types of the secondary information that is statistically related to each material are generated. From the comparative analysis with various case studies, the accuracies of the techniques become degenerated with inclusion of additive errors and small amount of the training data. For HMM predictions, the conventional HMM shows the similar accuracies with the models that does not relies on transition probability. However, the mHMM consistently shows the highest prediction accuracy among the test cases, which can be attributed to the consideration of geological nature in the training of the model.

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF

Semantic Image Segmentation for Efficiently Adding Recognition Objects

  • Lu, Chengnan;Park, Jinho
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.701-710
    • /
    • 2022
  • With the development of artificial intelligence technology, various methods have been developed for recognizing objects in images using machine learning. Image segmentation is the most effective among these methods for recognizing objects within an image. Conventionally, image datasets of various classes are trained simultaneously. In situations where several classes require segmentation, all datasets have to be trained thoroughly. Such repeated training results in low training efficiency because most of the classes have already been trained. In addition, the number of classes that appear in the datasets affects training. Some classes appear in datasets in remarkably smaller numbers than others, and hence, the training errors will not be properly reflected when all the classes are trained simultaneously. Therefore, a new method that separates some classes from the dataset is proposed to improve efficiency during training. In addition, the accuracies of the conventional and proposed methods are compared.