• 제목/요약/키워드: Machine Learning

검색결과 5,492건 처리시간 0.032초

머신러닝을 활용한 대학생 중도탈락 위험군의 예측모델 비교 연구 : N대학 사례를 중심으로 (A Comparative Study of Prediction Models for College Student Dropout Risk Using Machine Learning: Focusing on the case of N university)

  • 김소현;조성현
    • 대한통합의학회지
    • /
    • 제12권2호
    • /
    • pp.155-166
    • /
    • 2024
  • Purpose : This study aims to identify key factors for predicting dropout risk at the university level and to provide a foundation for policy development aimed at dropout prevention. This study explores the optimal machine learning algorithm by comparing the performance of various algorithms using data on college students' dropout risks. Methods : We collected data on factors influencing dropout risk and propensity were collected from N University. The collected data were applied to several machine learning algorithms, including random forest, decision tree, artificial neural network, logistic regression, support vector machine (SVM), k-nearest neighbor (k-NN) classification, and Naive Bayes. The performance of these models was compared and evaluated, with a focus on predictive validity and the identification of significant dropout factors through the information gain index of machine learning. Results : The binary logistic regression analysis showed that the year of the program, department, grades, and year of entry had a statistically significant effect on the dropout risk. The performance of each machine learning algorithm showed that random forest performed the best. The results showed that the relative importance of the predictor variables was highest for department, age, grade, and residence, in the order of whether or not they matched the school location. Conclusion : Machine learning-based prediction of dropout risk focuses on the early identification of students at risk. The types and causes of dropout crises vary significantly among students. It is important to identify the types and causes of dropout crises so that appropriate actions and support can be taken to remove risk factors and increase protective factors. The relative importance of the factors affecting dropout risk found in this study will help guide educational prescriptions for preventing college student dropout.

A Nature-inspired Multiple Kernel Extreme Learning Machine Model for Intrusion Detection

  • Shen, Yanping;Zheng, Kangfeng;Wu, Chunhua;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.702-723
    • /
    • 2020
  • The application of machine learning (ML) in intrusion detection has attracted much attention with the rapid growth of information security threat. As an efficient multi-label classifier, kernel extreme learning machine (KELM) has been gradually used in intrusion detection system. However, the performance of KELM heavily relies on the kernel selection. In this paper, a novel multiple kernel extreme learning machine (MKELM) model combining the ReliefF with nature-inspired methods is proposed for intrusion detection. The MKELM is designed to estimate whether the attack is carried out and the ReliefF is used as a preprocessor of MKELM to select appropriate features. In addition, the nature-inspired methods whose fitness functions are defined based on the kernel alignment are employed to build the optimal composite kernel in the MKELM. The KDD99, NSL and Kyoto datasets are used to evaluate the performance of the model. The experimental results indicate that the optimal composite kernel function can be determined by using any heuristic optimization method, including PSO, GA, GWO, BA and DE. Since the filter-based feature selection method is combined with the multiple kernel learning approach independent of the classifier, the proposed model can have a good performance while saving a lot of training time.

Bacterial Foraging Algorithm을 이용한 Extreme Learning Machine의 파라미터 최적화 (Parameter Optimization of Extreme Learning Machine Using Bacterial Foraging Algorithm)

  • 조재훈;이대종;전명근
    • 한국지능시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.807-812
    • /
    • 2007
  • 최근 단일 은닉층을 갖는 전방향 신경회로망 구조로, 기존의 경사 기반 학습알고리즘들보다 학습 속도가 매우 우수한 ELM(Extreme Learning Machine)이 제안되었다. ELM 알고리즘은 입력 가중치들과 은닉 바이어스들의 초기 값을 무작위로 선택하고 출력 가중치들은 Moore-Penrose(MP) 일반화된 역행렬 방법을 통하여 구해진다. 그러나 입력 가중치들과 은닉층 바이어스들의 초기 값 선택이 어렵다는 단점을 갖고 있다. 본 논문에서는 최적화 알고리즘 중 박테리아 생존(Bacterial Foraging) 알고리즘의 수정된 구조를 이용하여 ELM의 초기 입력 가중치들과 은닉층 바이어스들을 선택하는 개선된 방법을 제안하였다. 실험을 통하여 제안된 알고리즘이 많은 입력 데이터를 가지는 문제들에 대하여 성능이 우수함을 보였다.

텐서플로우 튜토리얼 방식의 머신러닝 신규 모델 개발 : 캐글 타이타닉 데이터 셋을 중심으로 (Developing of New a Tensorflow Tutorial Model on Machine Learning : Focusing on the Kaggle Titanic Dataset)

  • 김동길;박용순;박래정;정태윤
    • 대한임베디드공학회논문지
    • /
    • 제14권4호
    • /
    • pp.207-218
    • /
    • 2019
  • The purpose of this study is to develop a model that can systematically study the whole learning process of machine learning. Since the existing model describes the learning process with minimum coding, it can learn the progress of machine learning sequentially through the new model, and can visualize each process using the tensor flow. The new model used all of the existing model algorithms and confirmed the importance of the variables that affect the target variable, survival. The used to classification training data into training and verification, and to evaluate the performance of the model with test data. As a result of the final analysis, the ensemble techniques is the all tutorial model showed high performance, and the maximum performance of the model was improved by maximum 5.2% when compared with the existing model using. In future research, it is necessary to construct an environment in which machine learning can be learned regardless of the data preprocessing method and OS that can learn a model that is better than the existing performance.

오픈신경망 포맷을 이용한 기계학습 모델 변환 및 추론 (Model Transformation and Inference of Machine Learning using Open Neural Network Format)

  • 김선민;한병현;허준영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.107-114
    • /
    • 2021
  • 최근 다양한 분야에 인공지능 기술이 도입되고, 학계 관심이 늘어남에 따라 다양한 기계학습 모델들이 여러 프레임워크에서 운용되고 있다. 하지만 이러한 프레임워크들은 서로 다른 데이터 포맷을 가지고 있어, 상호운용성이 부족하며 이를 극복하기 위해 오픈 신경망 교환 포맷인 ONNX가 제안되었다. 본 논문에서는 여러 기계학습 모델을 ONNX로 변환하는 방법을 설명하고, 통합된 ONNX 포맷에서 기계학습 기법을 판별할 수 있는 알고리즘 및 추론 시스템을 제안한다. 또한, ONNX 변환 전·후 모델의 추론 성능을 비교하여 ONNX 변환 간 학습 결과의 손실이나 성능 저하가 없음을 보인다.

기계학습 기반 철근콘크리트 기둥에 대한 신속 파괴유형 예측 모델 개발 연구 (Machine Learning-Based Rapid Prediction Method of Failure Mode for Reinforced Concrete Column)

  • 김수빈;오근영;신지욱
    • 한국지진공학회논문집
    • /
    • 제28권2호
    • /
    • pp.113-119
    • /
    • 2024
  • Existing reinforced concrete buildings with seismically deficient column details affect the overall behavior depending on the failure type of column. This study aims to develop and validate a machine learning-based prediction model for the column failure modes (shear, flexure-shear, and flexure failure modes). For this purpose, artificial neural network (ANN), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) models were used, considering previously collected experimental data. Using four machine learning methodologies, we developed a classification learning model that can predict the column failure modes in terms of the input variables using concrete compressive strength, steel yield strength, axial load ratio, height-to-dept aspect ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio. The performance of each machine learning model was compared and verified by calculating accuracy, precision, recall, F1-Score, and ROC. Based on the performance measurements of the classification model, the RF model represents the highest average value of the classification model performance measurements among the considered learning methods, and it can conservatively predict the shear failure mode. Thus, the RF model can rapidly predict the column failure modes with simple column details.

Early Diagnosis of anxiety Disorder Using Artificial Intelligence

  • Choi DongOun;Huan-Meng;Yun-Jeong, Kang
    • International Journal of Advanced Culture Technology
    • /
    • 제12권1호
    • /
    • pp.242-248
    • /
    • 2024
  • Contemporary societal and environmental transformations coincide with the emergence of novel mental health challenges. anxiety disorder, a chronic and highly debilitating illness, presents with diverse clinical manifestations. Epidemiological investigations indicate a global prevalence of 5%, with an additional 10% exhibiting subclinical symptoms. Notably, 9% of adolescents demonstrate clinical features. Untreated, anxiety disorder exerts profound detrimental effects on individuals, families, and the broader community. Therefore, it is very meaningful to predict anxiety disorder through machine learning algorithm analysis model. The main research content of this paper is the analysis of the prediction model of anxiety disorder by machine learning algorithms. The research purpose of machine learning algorithms is to use computers to simulate human learning activities. It is a method to locate existing knowledge, acquire new knowledge, continuously improve performance, and achieve self-improvement by learning computers. This article analyzes the relevant theories and characteristics of machine learning algorithms and integrates them into anxiety disorder prediction analysis. The final results of the study show that the AUC of the artificial neural network model is the largest, reaching 0.8255, indicating that it is better than the other two models in prediction accuracy. In terms of running time, the time of the three models is less than 1 second, which is within the acceptable range.

머신러닝을 활용한 지역축제 방문객 수 예측모형 개발 (Development of a Model to Predict the Number of Visitors to Local Festivals Using Machine Learning)

  • 이인지;윤현식
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권3호
    • /
    • pp.35-52
    • /
    • 2020
  • Purpose Local governments in each region actively hold local festivals for the purpose of promoting the region and revitalizing the local economy. Existing studies related to local festivals have been actively conducted in tourism and related academic fields. Empirical studies to understand the effects of latent variables on local festivals and studies to analyze the regional economic impacts of festivals occupy a large proportion. Despite of practical need, since few researches have been conducted to predict the number of visitors, one of the criteria for evaluating the performance of local festivals, this study developed a model for predicting the number of visitors through various observed variables using a machine learning algorithm and derived its implications. Design/methodology/approach For a total of 593 festivals held in 2018, 6 variables related to the region considering population size, administrative division, and accessibility, and 15 variables related to the festival such as the degree of publicity and word of mouth, invitation singer, weather and budget were set for the training data in machine learning algorithm. Since the number of visitors is a continuous numerical data, random forest, Adaboost, and linear regression that can perform regression analysis among the machine learning algorithms were used. Findings This study confirmed that a prediction of the number of visitors to local festivals is possible using a machine learning algorithm, and the possibility of using machine learning in research in the tourism and related academic fields, including the study of local festivals, was captured. From a practical point of view, the model developed in this study is used to predict the number of visitors to the festival to be held in the future, so that the festival can be evaluated in advance and the demand for related facilities, etc. can be utilized. In addition, the RReliefF rank result can be used. Considering this, it will be possible to improve the existing local festivals or refer to the planning of a new festival.

머신러닝 기반 골프 퍼팅 방향 예측 모델을 활용한 중요 변수 분석 방법론 (Method of Analyzing Important Variables using Machine Learning-based Golf Putting Direction Prediction Model)

  • Kim, Yeon Ho;Cho, Seung Hyun;Jung, Hae Ryun;Lee, Ki Kwang
    • 한국운동역학회지
    • /
    • 제32권1호
    • /
    • pp.1-8
    • /
    • 2022
  • Objective: This study proposes a methodology to analyze important variables that have a significant impact on the putting direction prediction using a machine learning-based putting direction prediction model trained with IMU sensor data. Method: Putting data were collected using an IMU sensor measuring 12 variables from 6 adult males in their 20s at K University who had no golf experience. The data was preprocessed so that it could be applied to machine learning, and a model was built using five machine learning algorithms. Finally, by comparing the performance of the built models, the model with the highest performance was selected as the proposed model, and then 12 variables of the IMU sensor were applied one by one to analyze important variables affecting the learning performance. Results: As a result of comparing the performance of five machine learning algorithms (K-NN, Naive Bayes, Decision Tree, Random Forest, and Light GBM), the prediction accuracy of the Light GBM-based prediction model was higher than that of other algorithms. Using the Light GBM algorithm, which had excellent performance, an experiment was performed to rank the importance of variables that affect the direction prediction of the model. Conclusion: Among the five machine learning algorithms, the algorithm that best predicts the putting direction was the Light GBM algorithm. When the model predicted the putting direction, the variable that had the greatest influence was the left-right inclination (Roll).

Analysis of Open-Source Hyperparameter Optimization Software Trends

  • Lee, Yo-Seob;Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.56-62
    • /
    • 2019
  • Recently, research using artificial neural networks has further expanded the field of neural network optimization and automatic structuring from improving inference accuracy. The performance of the machine learning algorithm depends on how the hyperparameters are configured. Open-source hyperparameter optimization software can be an important step forward in improving the performance of machine learning algorithms. In this paper, we review open-source hyperparameter optimization softwares.