• Title/Summary/Keyword: Machinability evaluation

Search Result 75, Processing Time 0.034 seconds

Machinability evaluation according to variation of tool shape in high speed machining (고속가공용 엔드밀공구의 형상변화에 의한 성능평가)

  • 강명창;김정석;이득우;김광호;하동근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.393-398
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining in not close behind that of machine tool. In this study, several types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge, rake angle and relief angle. Machinability is measured by cutting force, tool life, tool wear, chip shape and surface roughness according to cutting length. 3-axis cutting forces are acquired from the invented tool dynamometer for high speed machining. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. By above results, it is suggested the endmill tool with $45^{\circ}$ helix angle, 6 cutting edge, $-15^{\circ}$ rake angle and $12^{\circ}$ relief angle be suitable for high speed machining

  • PDF

Selection of Cutting Fluids for Environmentally Clean Machining (청정 절삭 가공을 위한 절삭유제의 선택)

  • Chang, Yoonsang
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.165-175
    • /
    • 1996
  • Cutting fluids in machining process are one of the parameters which have serious effects on the environment. A simple method to accomplish the environmentally clean process is to evaluate the effects of cutting fluids and select one which has the least environmental load. In this research, a process planning to select the best cutting fluid is suggested considering both machinability and environmental effects. The selection criteria and evaluation method named AHP are introduced. The planning process is illustrated with drilling characterized as a heavy-duty and low-speed process. Five standard fluids are compared with respect to five environmental attributes. Compounded cutting oils are superior to water-soluble oils in both machinability and environmental effects.

  • PDF

Evaluation of Machinability by various cutting conditions in high machining using ball nose-end mills -Effects of cutting orientation and cutting environments- (볼엔드밀을 이용한 고속가공에서 가공경로와 가공환경에 따른 가공성 평가)

  • 이채문;김석원;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.297-301
    • /
    • 2002
  • High-speed machining generates concenter thermal/frictional damage at the cutting ed rapidly decreases the tool life. This paper I at determining the effect of cutter orienter the cutting environment on tool life, tool mechanism when down milling. In this paper, experiments were carried out in various tool and cutting environments, such as dry, wet compressed chilled air, tool life were measu evaluate machinability in high-speed milli difficult-to-cut material and die steel, Tool measured in horizontal upwards, horiz downwards, vertical upwards and vert downwards. In addition, tool life was measur dry, wet and compressed chilled air. For this a compressed chi1led-air system was manufact The results show that a horizontal cutter ori provided a longer tool life than a vertical orientation. With respect to the cutting envi compressed chilled air increased tool life. H the wet condition decreased tool life due thermal shock caused by excessive cooling high-speed mill ins and the compressed chilled had little effect.

  • PDF

Experimental evaluation technique for condition monitoring of high speed machining (고속가공의 상태 감시를 위한 실험적 평가 기술)

  • 김전하;강명창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.84-87
    • /
    • 2001
  • The high speed machining which cam improve the production and quality has been remarkable in die/mold industry with the growth of parts and materials industries. The speed of machine tool increases, but on the other hand, the response of sensors I not being improved. Therefore, the condition monitoring techniques for the machine too, tool and workpiece in high speed machining are incomplete. In this study, characteristics of the tool edge roughness were verified from the high frequency components of cutting force signals acquired by the high speed dynamometer. Also, the experimental evaluation technique for the machinability and condition monitoring in high speed machining was established by analyzing the cutting force, acceleration and surface roughness.

  • PDF

A Study on the Performance Evaluation Technology in High Speed Machining Center (고속 머시닝센터의 성능평가 기술에 관한 연구)

  • 강익수;강명창;김정석;김기태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.352-357
    • /
    • 2004
  • The high speed machining center(HMC) has been widely applied to manufacture a die and machine elements product in industrial field. Because the evaluation for HMC is not sufficiently performed, ineffective machining is occasionally conducted in machining industry. In this study, the dynamic characteristics of newly developed machining center is evaluated under running condition and the machinability is investigated experimentally. Also, the in-process measuring instrument which can measure the tool wear on the machine were developed by using the CCD and exclusive jig and calibration instrument for tool wear measurement.

  • PDF

A Study on the Development of In-Processor Dressing Lapping Wheel and its Evaluation of Machining Characteristics (연속 전해드레싱용 래핑숫돌 개발 및 성능평가)

  • Choe, Jae-Yeong;Lee, Eun-Sang;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.132-137
    • /
    • 2001
  • Application of ceramics, carbide, ferrite has grown considerably due to their mechanical properties such as high degree hardness, chemical stability, super wear resistance. Despite these characters, the use of advanced material has not increased because of poor machinability. The application of metal bonded wheel was proposed. But it is difficult that metal bond wheel can be dressed. Recently, to solve this problem, the technology of in-process electrolytic dressing is developed. This method need wheel for electrolytic dressing, power supply and electrolyte. The aim of this study is development of CIB-D wheel for electrolytic and its evaluation of electrolytic characteristics, and achieve ultra-precision lapping of carbide, optic glass.

  • PDF

Machinability evaluation of non-coated end mill tool fabricated by ultra-fine WC (초미립 WC로 제작된 무코팅 엔드밀 공구의 가공성 평가)

  • Kim D.H.;Kwon D.H.;Kang I.S.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.13-14
    • /
    • 2006
  • The quality of tool material is very important factor in machining evaluation. The characteristics of tungsten carbide, such as grain size and hardness, and density are depending on the variation of Co composition and WC size. In this study, the non-coated end mill which is made of ultra-fine tungsten carbide is investigated by measuring tool wear and tool lift test. The machining test is conducted with high hardened workpiece under high-speed cutting condition.

  • PDF

Fabrication and Evaluation of Machinability of Diamond Particle Electroplating Tool for Cover-Glass Edge Machining (커버 글래스 엣지 가공을 위한 다이아몬드 입자 전착 공구 제작 및 가공성 평가)

  • Kim, Byung-Chan;Yoon, Ho-Sub;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In these days, due to generalization of using smart mobile phone and wearable device such as smart watch, demand of Cover-glass and touch screen panel for protecting display increases. With increasing the demand of Cover-glass, slimming technique is promising for weight lightening, zero bezel. Cover-glass produced by this technique is required to decreasing thickness with increase strength. In the Cover-glass manufacturing process, mechanical processing and chemical processing has improve in the strength. Generally, Diamond electrodeposition wheel is used in mechanical process. Reinforced glass with the characteristics of the brittle and high hardness was manufactured by using a diamond electrodeposition wheel. At this time, Because of surface of the tool present non-uniform distribution of diamond particle, it has generate Loading of wheel and it has been decrease life of grinding tool, efficiency of grinding, quality and shape accuracy of workpiece. Thus Research is needed to controling particle distribution of diamond electrodeposition wheel uniformly. And it is necessary to study micro hole machining such as proximity senser hole, speaker hole positioned Cover-glass. Reinforced glass with the characteristics of the brittle and high hardness is difficult to machining. Processing of reinforced glass have generated wear of tool, micro cracks. Also, it is decreasing shape accuracy. In this paper, We conducted a study on how to control particle distribution uniformly about the diamond tool manufactured using elecetodeposition processing. It analyzed the factors that affect the arrangement of the particles in the electrodeposition process by design of experiment. And There is produced the grinding tool, which derives an optimum deposition conditions, for processing Cover-glass edge and the machinability was evaluated.

Performance Evaluation of Environmentally Conscious Machining using Super Low Temperature-Cold Air System (초저온 냉풍시스템을 이용한 환경친화적 가공의 성능평가)

  • Bae, J.C.;Lee, S.S.;Kang, M.C.;Kim, J.S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 2002
  • In industrially advanced countries, environmentally conscious machining was eagerly studied because of ecological and economical reasons. As the environmental regulations become stricter, new machining technologies which take environmental aspects into consideration are being developed Industry and research institutions established applications for dry, semi-dry, oil-mist and compressed cold air machining. This paper investigates the performance of new compressed cold air system for environmentally conscious machining and evaluates machinability of dry and new compressed cold air machining. A series of tests are carried out using measuring eqipments under dry and compressed cold air machining.

  • PDF

Performance Evaluation of Compressed Cold Air System for Environmentally Conscious Machining (환경친화적 가공을 위한 냉풍시스템의 성능평가)

  • 강명창;김정석;이득우;이승상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1008-1011
    • /
    • 2002
  • In industrially advanced countries, environmentally conscious machining was eagerly studied because of ecological and economical reasons. As the environmental regulations become stricter, new machining technologies which takes environmental aspects into consideration are being developed. Industry and research institutions established applications for dry, semi-dry, oil-mist and compressed cold air machining. This paper investigates the performance of new compressed cold air system for environmentally conscious machining and evaluates machinability of dry and new compressed cold air machining. A series of tests are carried out using measuring equipments under dry and compressed cold air machining.

  • PDF