• Title/Summary/Keyword: Maceral

Search Result 4, Processing Time 0.02 seconds

Relationship between maceral composition and some parameters indicating the degree of coalification (석탄화도의 지표와 석탄조직성분과의 관계)

  • 박홍수
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.83-91
    • /
    • 1999
  • Coal properties are controlled by the following two factors : One is the maceral components and the other is the degree of coalification. In other words, even if coals in question indicate the same degree of coalification, their chemical and physical properties considerably vary one another when their maceral components are different. It is well known that virtrinite reflectance is the best single criterion for the degree of coalification covering the whole range of coal rank. Some authors have recently insisted that sporinite fluorescence is more leliable coal rank parameter than vitrinite reflectance in case of low rank coals. In this paper, to examine the relince of sporinite fluorescence as coal rank parameter, fluidity analysis of coals is newly performed and the data are analyzed in comparision with those of virinite reflectance, sporinite fluorescence and maceral components. The results of this study are as follows; 1) Vitrinite reflectance becomes low when degradinite content is high within one columnar samples, and vice versa. 2) variation of vitrinite reflectance depend on degradinite content and on difference of roiginal plant. 3) In dealing with the Japanese paleogene coals, sporinite fluorescence is more reliable parameter indicating the degree of coalification than vitrinite reflectance. 4) Maximum fluidity increases exponetially in proportion to the increases of degradinite content.

  • PDF

Comparison Study for Domestic Coal and Material Characteristics of Coal from the Shipwreck of Koryo Dynasty (고려시대 선체출토 석탄의 재료학적 특성 및 국산 석탄과의 비교 연구)

  • Lee, JangJon;Park, SukWhan;Lim, SungTae;Han, MinSu
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.345-354
    • /
    • 2013
  • This study analyses geochemistrical, microscopic, mineralogical characteristics of coals which have been collected from in and out of the shipwreck No 1 of Mado island during underwater excavation in Taean. The result from mineralogical and geochemical analysis reveals that the specific gravity of the coals is $1.28g/cm^3$. Considering that coals contains 10% mineral of it and the specific gravity of the pure is $1.15g/cm^3$, it is believed that the collected coals would be lignite or biturminous coal. The X-ray diffraction analysis which displays the peak of $2{\theta}$ is 20~25C degree, proves that the collected coals would be categorised as low rank coal. The collected coals is composed of: 93%-94%(93.5%) of vitrinite maceral group, 5%-6%(5.5%) of exinite maceral group, and 1% of inertinite maceral group. In addition, the average of reflection rate is $R_{mean}$: 0.627 showing that it would be either high volatile bituminous C coal or sub-bituminous C coal. Such result confirms that the coal is sub-bituminous C or high volatile bituminous C coal in accordance with the U.S Bureau of Mine(USBM) classification system. The element analysis reveals that the coal is the coking coal which is grouped as the bituminous coal. Comparative analysis between the coals of Mado Shipwreck No 1 and domestic coals shows that the coals of Mado Shipwreck is similar to the bituminous coal used in the area of Janggi in Pohang city.

Property of the Jurassic anthracite (Anthracite from the Seongju Area of the Chungnam Coalfield) (충남탄전(忠南炭田) 무연탄(無煙炭)의 특성(特性))

  • Park, Suk Whan;Park, Hong Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.129-139
    • /
    • 1989
  • The anthracite coalfields of Korea are confined to the areas where sedimentary rocks of Permian and Jurassic are preserved. The Chungnam coalfield lies in the sedimentary rocks of Jurassic which belongs to the Daedong Supergroup (the Nampo group). For the property analysis of each coal seam interbeded in Daedong Supergroup, Seongju area is chosen and twelve coalseams are taken. Many standard tests have been established for optical analysis (maceral analysis, coalification degree measurement), chemical analysis (proximate, ultimate analysis) and physical analysis (ignition temperature, ash fusion temperature, hardgrove grindability index and X-ray diffraction). The Jurassic anthracite mainly consist of vitrinite and macrinite and the range of the reflectance is $R_{max}$ 5.0-6.5 which means metaanthracite rank. By the chemical composition analysis, it shows low H/C and high O/C value compare with international average value. By the physical analysis, it has very high ignition temperature ($531-584^{\circ}C$) and ash fusion temperature ($1510-1700^{\circ}C$) and very low combustion velocity (0.2-1.9 mg/min). The very wide range of the hardgrove grindability index (46-132) means that the grindability controlled mainly by the structural conditions of coal bearing strata.

  • PDF

Coal Petrological Characteristics of Korean Coal (국내탄의 석탄암석학적 특성)

  • Park, Hong Soo;Park, Suk Whan
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.141-150
    • /
    • 1989
  • In order to make economic and geological evaluation of coal in Korea, proximate and ultimate analyses were carried out as well as coal petrological studies such as maceral analyses, vitrinite reflectance and sporinite fluorescence measurement. The coeffcient of correlation between each factor of both conventional utilization and coal petrological parameters were studied as in Table 5 and 6. Their conclusions were as follow: (1) for anthracite, the good parameters of coal rank are mean vitrinite reflectance, carbon content, hydrogen content and H/C atomic ratio: (2) for brown coal and sub-bituminous coal, the good parameters of coal rank are carbon content, calorific value, moisture content, hydrogen content, oxygen content and O/C atomic ratio as well as vitrinite reflectance and sporinite fluorescence. An attempt is made to infer the coalforming environment by utilization of coal petrological analyses and to make comparison of coal analyses with proximate and ultimate analyses throughout the island arc region including Japan, Philippine and Indonesia and continental region including USA, Canada and Australia. As a result, meceral composition of Paleozoic and Mesozoic anthracite are similar to that of the Paleozoic continental coals, which were formed under dry conditions or low water table, but the coalification degree suddenly increased during Daebo orogeny (middle Jurassic to lower Cretaceous). The Tertiary coal resembles those of Tertiary island arc region coal characterized by higher calorific value, volatile matter content and H/C atomic ratio and by the formation of coal under wet conditions or higher water table.

  • PDF