• Title/Summary/Keyword: Macau

Search Result 66, Processing Time 0.022 seconds

Operational modal analysis of a long-span suspension bridge under different earthquake events

  • Ni, Yi-Qing;Zhang, Feng-Liang;Xia, Yun-Xia;Au, Siu-Kui
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.859-887
    • /
    • 2015
  • Structural health monitoring (SHM) has gained in popularity in recent years since it can assess the performance and condition of instrumented structures in real time and provide valuable information to the asset's manager and owner. Operational modal analysis plays an important role in SHM and it involves the determination of natural frequencies, damping ratios and mode shapes of a constructed structure based on measured dynamic data. This paper presents the operational modal analysis and seismic response characterization of the Tsing Ma Suspension Bridge of 2,160 m long subjected to different earthquake events. Three kinds of events, i.e., short-distance, middle-distance and long-distance earthquakes are taken into account. A fast Bayesian modal identification method is used to carry out the operational modal analysis. The modal properties of the bridge are identified and compared by use of the field monitoring data acquired before and after the earthquake for each type of the events. Research emphasis is given on identifying the predominant modes of the seismic responses in the deck during short-distance, middle-distance and long-distance earthquakes, respectively, and characterizing the response pattern of various structural portions (deck, towers, main cables, etc.) under different types of earthquakes. Since the bridge is over 2,000 m long, the seismic wave would arrive at the tower/anchorage basements of the two side spans at different time instants. The behaviors of structural dynamic responses on the Tsing Yi side span and on the Ma Wan side span under each type of the earthquake events are compared. The results obtained from this study would be beneficial to the seismic design of future long-span bridges to be built around Hong Kong (e.g., the Hong Kong-Zhuhai-Macau Bridge).

Designing an Efficient and Secure Credit Card-based Payment System with Web Services Based on the ANSI X9.59-2006

  • Cheong, Chi Po;Fong, Simon;Lei, Pouwan;Chatwin, Chris;Young, Rupert
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.495-520
    • /
    • 2012
  • A secure Electronic Payment System (EPS) is essential for the booming online shopping market. A successful EPS supports the transfer of electronic money and sensitive information with security, accuracy, and integrity between the seller and buyer over the Internet. SET, CyberCash, Paypal, and iKP are the most popular Credit Card-Based EPSs (CCBEPSs). Some CCBEPSs only use SSL to provide a secure communication channel. Hence, they only prevent "Man in the Middle" fraud but do not protect the sensitive cardholder information such as the credit card number from being passed onto the merchant, who may be unscrupulous. Other CCBEPSs use complex mechanisms such as cryptography, certificate authorities, etc. to fulfill the security schemes. However, factors such as ease of use for the cardholder and the implementation costs for each party are frequently overlooked. In this paper, we propose a Web service based new payment system, based on ANSI X9.59-2006 with extra features added on top of this standard. X9.59 is an Account Based Digital Signature (ABDS) and consumer-oriented payment system. It utilizes the existing financial network and financial messages to complete the payment process. However, there are a number of limitations in this standard. This research provides a solution to solve the limitations of X9.59 by adding a merchant authentication feature during the payment cycle without any addenda records to be added in the existing financial messages. We have conducted performance testing on the proposed system via a comparison with SET and X9.59 using simulation to analyze their levels of performance and security.

Improvement Strategies for Coastal Zone Safety Facilities through Analysis of Domestic and Foreign Field Survey (국내외 실태조사 분석을 통한 연안역 안전시설의 개선방향)

  • Bae, Hyun-Ung;Yi, Gyu-Sei;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.478-484
    • /
    • 2013
  • Recently, the risk of safety accidents in the coastal zone has been increased due to revitalization of marine leisure and tourism. Because of a lack of regulations about technical and maintenance aspect for safety facilities, the effective measures to prevent safety accidents in the coastal zone have not taken with increasing rate of the accidents. The nature of land/sea and behavioral characteristics of a fisherman/port laborer/tourist/people at leisure should be taken into account properly when safety facilities to prevent safety accidents in the coastal zone are installed, since the characteristics of land/sea and many activities such as fishery, harbor works, tour, leisure are mixed in the geographic and environmental condition of the coastal zone. This study analyzes the current problems on the safety facility in the domestic coastal zone through the domestic and foreign(Hongkong, Macau) field survey. Also the direction of the improvement about the safety facility are proposed.

A Deep Belief Network for Electricity Utilisation Feature Analysis of Air Conditioners Using a Smart IoT Platform

  • Song, Wei;Feng, Ning;Tian, Yifei;Fong, Simon;Cho, Kyungeun
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.162-175
    • /
    • 2018
  • Currently, electricity consumption and feedback mechanisms are being widely researched in Internet of Things (IoT) areas to realise power consumption monitoring and management through the remote control of appliances. This paper aims to develop a smart electricity utilisation IoT platform with a deep belief network for electricity utilisation feature modelling. In the end node of electricity utilisation, a smart monitoring and control module is developed for automatically operating air conditioners with a gateway, which connects and controls the appliances through an embedded ZigBee solution. To collect electricity consumption data, a programmable smart IoT gateway is developed to connect an IoT cloud server of smart electricity utilisation via the Internet and report the operational parameters and working states. The cloud platform manages the behaviour planning functions of the energy-saving strategies based on the power consumption features analysed by a deep belief network algorithm, which enables the automatic classification of the electricity utilisation situation. Besides increasing the user's comfort and improving the user's experience, the established feature models provide reliable information and effective control suggestions for power reduction by refining the air conditioner operation habits of each house. In addition, several data visualisation technologies are utilised to present the power consumption datasets intuitively.

Use of deep learning in nano image processing through the CNN model

  • Xing, Lumin;Liu, Wenjian;Liu, Xiaoliang;Li, Xin;Wang, Han
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.185-195
    • /
    • 2022
  • Deep learning is another field of artificial intelligence (AI) utilized for computer aided diagnosis (CAD) and image processing in scientific research. Considering numerous mechanical repetitive tasks, reading image slices need time and improper with geographical limits, so the counting of image information is hard due to its strong subjectivity that raise the error ratio in misdiagnosis. Regarding the highest mortality rate of Lung cancer, there is a need for biopsy for determining its class for additional treatment. Deep learning has recently given strong tools in diagnose of lung cancer and making therapeutic regimen. However, identifying the pathological lung cancer's class by CT images in beginning phase because of the absence of powerful AI models and public training data set is difficult. Convolutional Neural Network (CNN) was proposed with its essential function in recognizing the pathological CT images. 472 patients subjected to staging FDG-PET/CT were selected in 2 months prior to surgery or biopsy. CNN was developed and showed the accuracy of 87%, 69%, and 69% in training, validation, and test sets, respectively, for T1-T2 and T3-T4 lung cancer classification. Subsequently, CNN (or deep learning) could improve the CT images' data set, indicating that the application of classifiers is adequate to accomplish better exactness in distinguishing pathological CT images that performs better than few deep learning models, such as ResNet-34, Alex Net, and Dense Net with or without Soft max weights.

Age-induced Changes in Ginsenoside Accumulation and Primary Metabolic Characteristics of Panax Ginseng in Transplantation Mode

  • Wei Yuan;Qing-feng Wang;Wen-han Pei;Si-yu Li;Tian-min Wang;Hui-peng Song;Dan Teng;Ting-guo Kang;Hui Zhang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Background: Ginseng (Panax ginseng Mayer) is an important natural medicine. However, a long culture period and challenging quality control requirements limit its further use. Although artificial cultivation can yield a sustainable medicinal supply, research on the association between the transplantation and chaining of metabolic networks, especially the regulation of ginsenoside biosynthetic pathways, is limited. Methods: Herein, we performed Liquid chromatography tandem mass spectrometry based metabolomic measurements to evaluate ginsenoside accumulation and categorise differentially abundant metabolites (DAMs). Transcriptome measurements using an Illumina Platform were then conducted to probe the landscape of genetic alterations in ginseng at various ages in transplantation mode. Using pathway data and crosstalk DAMs obtained by MapMan, we constructed a metabolic profile of transplantation Ginseng. Results: Accumulation of active ingredients was not obvious during the first 4 years (in the field), but following transplantation, the ginsenoside content increased significantly from 6-8 years (in the wild). Glycerolipid metabolism and Glycerophospholipid metabolism were the most significant metabolic pathways, as Lipids and lipid-like molecule affected the yield of ginsenosides. Starch and sucrose were the most active metabolic pathways during transplantation Ginseng growth. Conclusion: This study expands our understanding of metabolic network features and the accumulation of specific compounds during different growth stages of this perennial herbaceous plant when growing in transplantation mode. The findings provide a basis for selecting the optimal transplanting time.