• Title/Summary/Keyword: MYCORRHIZA

Search Result 42, Processing Time 0.03 seconds

Endomycorrhizal Fungi identified on the Soils in Forest and Coast Areas (산림 및 해안지역에서 발견된 내생균근)

  • Eom, Ahn-Heum;Lee, Sang-Sun
    • The Korean Journal of Mycology
    • /
    • v.17 no.1
    • /
    • pp.14-20
    • /
    • 1989
  • The presence of endomycorrhizal fungi was examined on the soils collected from the followings; Cryptomeria japonica dominant forest (Wan San Park, Jun Ju city) and two coast areas (Digitaria sanginalis dominant; Sin Chang Ri, Young Il Kun and Pragmited communis dominant; Sap Kyo Cheon, A San). Six species in Endogonales were identified; Glomus intraradices, G. occulum, G. clarum, Acaulospora bireticulata, Scutellospora aurigloba, and Sc. gilmorei.

  • PDF

Effects of Interspecific Interactions of Arbuscular Mycorrhizal Fungi on Growth of Soybean and Corn

  • Jeong, Hyeon-Suk;Lee, Jai-Koo;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.34-37
    • /
    • 2006
  • Growth responses of Zea mays and Glycine max to colonization by mixture of combination of three species of arbuscular mycorrhizal (AM) fungi, two species of Glomus and a species of Scutellospora were compared. In Zea mays, plants inoculated with single species of AM fungi showed significantly higher in dry weight than non-mycorrhizal plant for all three AM fungal species. Also, growth of plants inoculated with spores of two species of AM fungi was significantly higher than nonmycorrhizal control except for plants inoculated with two Glomus species. When three species of AM fungi were inoculated, the plants showed the highest growth. In Glycine max, plants with single AM fungal species inoculation were not significantly different in plant growth from nonmycorrhizal plants. When the plants were inoculated with combination of two or more AM fungal species, their growth significantly increased compared to nonmycorrhizal plants. In both plant species, mycorrhizal root colonization by Scutellospora species was significantly lower than by Glomus species.

The Observation of Arbuscular Mycorrhizal Roots in Horticultural Plants

  • Kim, Yee;Eom, Ahn-Heum;Tae, Moon-Sung;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.28 no.3
    • /
    • pp.115-118
    • /
    • 2000
  • To determine the degree of variability among the host plant species in their abilities to become colonized by arbuscular mycorrhizal fungi (AMF), the inoculum for AMF was collected from the various sites in Korea and was inoculated to the three horticultural plants; Tagetes patula, Torenia fournieri, and Salvia splendens. After 4-month growth under greenhouse, mycorrhizal root colonization rates and spore density were measured. The roots of T. patula showed higher colonization rate than both plants of T. fournieri and Salvia splendens. The mycorrhizal root colonization was influenced by both of the AM fungal inoculum and the host species or their interactions. The combination of the host and fungal species was suggested to be important for the application of AMF to horticultural crops.

  • PDF

Effects of Soils Containing Arbuscular Mycorrhizas on Plant Growth and Their Colonization

  • Eom, Ahn-Heum;Kim, Yee;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.30 no.1
    • /
    • pp.18-21
    • /
    • 2002
  • Four arbuscular mycorrhizal fungal(AMF) inocula collected from three arable sites in Korea were used to determine plant growth, mycorrhizal root colonization rate and spore production in three different host plant species; Sorghum bicolor, Allium fistulosum, Tagetes patula. Growth of plant treated with AMF differed from those without AMF. Different AMF inocula showed significantly different root colonization rates and spore production of AMF on the wild plants, A. fistulosum and T. patula, but did not on the cultivated plant, S. bicolor. Results suggested that indigenous mycorrhizal fungal community would be important factors in mycorrhizal symbiosis, and play important roles in the plant succession.

Biodiversity and Distribution of Arbuscular Mycorrhizal Fungi in Korea

  • Eo, Ju-Kyeong;Park, Sang-Hee;Lee, Eun-Hwa;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.42 no.4
    • /
    • pp.255-261
    • /
    • 2014
  • In this study, we summarized previous studies on diversity and distribution of arbuscular mycorrhizal fungi (AMF) for last 30 years in Korea. According to a review of the literature concerning AMF in Korea, 14 genera and 89 species have been recorded. Host plants for AMF are very diverse and include crop species and woody plants in natural forests. Based on the achievements of the last 30 years of study on AMF, we anticipate that relatively more intensive studies of the functional and genetic diversity of AMF will be conducted.

Identification of Arbuscular Mycorrhizal Fungi from Botrychium ternatum Native in Korea

  • Lee, Jun-Ki;Eom, Ahn-Heum;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.32 no.4
    • /
    • pp.179-185
    • /
    • 2004
  • Arbuscular mycorrhizal fungi were observed in Botrychium ternatum native in Korea. The partial small subunit(SSU) of ribosomal DNA gene from the fern roots was amplified with primers AM1/NS31. Nucleotides sequence analysis of the clones revealed that two fragments were close to Glomus proliferum and G. sinuosum. The other three DNA fragments were close to those of G. proliferum with the relatively low similarities($92{\sim}95%$) and speculated to be originated from three different species of Glomus(GLA006, GLA016, and GLA032). Five different nucleotide sequences close to three AM fungal species were found in the roots of B. ternatum native in Korea.

Morphological and Phylogenetic Characteristics of Tuber himalayense Collected from Rhizosphere of Quercus dentata in Korea

  • Park, Hyeok;Gwon, Ju-Hui;Lee, Jong-Chul;Kim, Hyun Suk;Seo, Geon-Sik;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.49 no.1
    • /
    • pp.101-108
    • /
    • 2021
  • We collected the ascomata of Tuber species from the rhizosphere of Quercus dentata in Danyang, Korea. We observed the morphological characteristics of ectomycorrhizal roots and ascomata, and identified the species based on the results of the phylogenetic analysis conducted using the DNA sequences of an internal transcribed spacer, a large-subunit rDNA, translation elongation factor 1-α DNA (TEF1), and MAT. Finally, we identified the fungal species as Tuber himalayense B.C. Zhang & Minter, which has not been recorded previously in Korea. We evaluated the morphological characteristics and conducted phylogenetic analysis of the ascoma and mycorrhiza (associated with Q. dentata) of T. himalayense.

Effects of Arbuscular Mycorrhiza Inoculation and Phosphorus Application on Early Growth of Hot Pepper(Capsicum annum L.) (Arbuscular mycorrhiza의 접종방법 및 인산시용량이 고추(Capsicum annum L.)의 초기생장에 미치는 영향)

  • Park, Hyang-Mee;Kang, Hang-Won;Kang, Ui-Gum;Park, Kyeong-Bae;Lee, Sang-Sun;Song, Sung-Dahl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study was conducted to examine the effects of Arbuscular Mycorrhizae inoculation and phosphorus application on early growth of hot pepper. Gigaspora margarita and Acaulospora spinosa were chosen for this investigation and inoculated into soils of different P levels by varying inoculation time and density. After treatment, some relevant growth responses of hot pepper were measured. Regardless of soil P levels, hot peppers treated with arbuscular mycorrhizal fungi had 5~34% more fresh weight than those untreated, but the effect of inoculation time and density was not different between two species. With decreased P levels, the infection rate and dependency of hot peppers increased. The content of P and K of AMF-inoculated hot peppers increased with increasing P levels, but the shoot to root ratio of those elements decreased. The results of this study showed that inoculation of AMF would be effective in promoting growth of hot pepper seedlings and increase transplant adaptation due in part to the resulted higher root development.

  • PDF

Effects of Mycorrhizal Inoculation on Plant Growth and N Metabolites in Relation to drought-stress Tolerance (Mycorrhiza 접종이 가뭄 스트레스하의 식물성장과 질소 대사산물에 미치는 영향)

  • Lee, Bok-Rye;Jung, Woo-Jin;Kim, Dae-Hyun;Kim, Kil-Yong;Shon, Bo-Kyoon;Kim, Tae-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.314-325
    • /
    • 2002
  • The effects of arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on plant growth and N metabolic responses were examined in perennial ryegrass plants exposed to drought-stressed or well-watered condition. Mycorrhizal inoculation improved significantly leaf water potential, dry mass and P content. Drought stress increased significantly nitrate concentration in roots where the increase was much less in AM than non-AM. Drought stress decreased the concentration of soluble proteins in non-AM shoots, whereas non-significant decline occurred in AM shoots even under drought condition. The concentrations of ammonia and proline in drought stressed non-AM plants significantly increased, while mycorrhizal inoculation lowered significantly ammonia and proline accumulation. The decrease in leaf dry weight in drought stressed-plants was significantly correlated to the increase in ammonia (p<0.01) and proline concentration (p<0.01). These results suggested that the increased P content and N assimilation by mycorrhizal inoculation may be associated with drought stress tolerance, showing the moderating effects on shoot growth inhibition and ammonia accumulation in drought stressed-plants.

Identification of Ectomycorrhizal Fungi from Pinus densiflora Seedlings at an Abandoned Coal Mining Spoils

  • Park, Sang-Hyeon;Jeong, Hyeon-Suk;Lee, Yoo-Mee;Eom, Ahn-Heum;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • v.29 no.2
    • /
    • pp.143-149
    • /
    • 2006
  • This study was conducted to identify native ectomycorrhizal (ECM) fungi colonizing Pinus densiflora for revegetation of abandoned coal mines in Korea. Seedlings of P. densiflora growing on coal mining spoils of a study site in Samcheok were collected. ECM roots were observed under stereomicroscope and their DNA were extracted from each root tip for a seedling for molecular identification. A PCR primer pair specific to fungi, ITS1F and ITS4, was used to amplify fungal DNA. Restriction enzymes, Alul and Hinfl were used for restriction fragment length polymorphism (RFLP). Combined with RFLP profiles and sequence analysis, total twenty one taxa were identified from the ECM root tips. Basidiomycetous fungi including Thelephoraceae, Pezizales, Laccaria, Pisolithus and Ascomycetous fungi including ericoid mycorrhizal fungi were identified from this study. Results showed that the most frequently found in the study sites was a species in Thelephoraceae. A possible use of ECM fungi identified in this study for the revegetation of abandoned coal mines with P. densiflora was discussed.