• Title/Summary/Keyword: MYC

Search Result 258, Processing Time 0.024 seconds

Zygotic Expression of c-myc Gene in Mouse Early Embryos: Functional Role of c-myc Promoter (생쥐 초기배아에서 c-myc Proto-Oncogene Promoter의 기능적 활성화)

  • Park, Ki-Soo;Kang, Hae-Mook;Shim, Chan-seob;Sun, Woong;Kim, Jae-man;Lee, Young-Ki;Kim, Kyung-jin
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.550-556
    • /
    • 1995
  • The c-myc proto-oncogene is Involved In the control of normal cell proliferation and differentiation of many cell lineages. Although it has heen suggested that c-myc may play an important role in the mammalian early development, it Is unclear whether the embryonic c-myc mRNA is originated from zygotic gene expression or stored maternal message. Thus, we have construded expression vectors, In which the 5, flanking sequences including c-myc promoter region and a large non-coding exon I are fused 'sith E. coli lacZ gene that encedes $\beta$-galactosldase as a reporter. As c-myc exon I contains a modulatory sequence, we designed t, vo types of vectors (pcmyc.Gall and pcmyc-Ga12) to examine the role of exon I in c-myc expression. The former contains the complete exon I and the later has a deletion in 40 bp of modulator sequence located In the exon I of c-myc These vectors were microInjected into fertilized one-cell embryos and $\beta$-galactosidase activity was examined by X-gal staining during early embryogenesis. $\beta$-galactosidase activity derived from c-myc promoter was decreased at two-cell stage. The expression level directed by pcmyc- Ga12 was similar to that of pcmyc-Gal1, indicating that the medulatory sequence in exon I may not be Involved at least In the regulation of embryonic c-myc expression. In summary, the present study indicates that the c-myc promoter is functional at the early stage embryo, and the regulation of c-myc expression is under the control of "zygotic" clock of preimplantation mouse embryos.e embryos.

  • PDF

Expression of c-myc Proto-oncogene in Preimplantation Mouse Embryos (착상전 생쥐배아에서 c-myc 유전자의 발현)

  • 정성진;강해묵강성구김경진
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.196-203
    • /
    • 1995
  • The c-myc proto-oncogene, one of the immediately earlY genes, is expressed in various mammalian cell types and heavily involved in the regulation of cell proliferation and differentiation. To determine endogeneous expression pattern of c-myc gene in preimpBantation mouse embwos, we employed a reverse transcription coupled to polvrnerase chain reaction (RT-PCR). Transcript of c-myc was detected at fertilized embryos as a maternal transcript. At the early two-cell stave, transcript of c-myc gene was hardly detected, bu, appeared at late two-cell embryos as a zygotic transcript. The level of c-myc expresion was increased at later stases and peaked at blastocvst stage. To examine the functional role of promoter region for c-myc gene transcription, we fused the 5'upstream region (1.8 kb) including econ 1 of c-myc genomic DNA with E. coli lacE gene fnamed as pcMYC-laczl. pcMYC-lacZ was microiniected into the pronscleus of mouse one-cell embryovs, and p·salactosidase activity was determined tv histochemical staining with X-gal at different stases. f-galactosidase activity was detected only at blastocyst, but not at the earlier stage embryos. This result indicates that c-myc gene is transcriptionallv active during mouse preimplantation development.

  • PDF

Upregulation of Myc promotes the evasion of NK cell-mediated immunity through suppression of NKG2D ligands in K562 cells

  • Young-Shin Lee;Woong Heo;Cheol-Hun Son;Chi-Dug Kang;You-Soo Park;Jaeho Bae
    • Molecular Medicine Reports
    • /
    • v.20 no.4
    • /
    • pp.3301-3307
    • /
    • 2019
  • c-Myc is a characteristic oncogene with dual functions in cell proliferation and apoptosis. Since the overexpression of the c-Myc proto-oncogene is a common event in the development and growth of various human types of cancer, the present study investigated whether oncogenic c-Myc can alter natural killer (NK) cell-mediated immunity through the expression of associated genes, using PCR, western blotting and flow cytometry assays. Furthermore, whether c-Myc could influence the expression levels of natural killer group 2 member D (NKG2D) ligands, which are well known NK activation molecules, as well as NK cell-mediated immunity, was investigated. c-Myc was inhibited by 10058-F4 treatment and small interfering RNA transfection. Upregulation of c-Myc was achieved by transfection with a pCMV6-myc vector. The inhibition of c-Myc increased MHC class I polyeptide-related sequence B and UL16 binding protein 1 expressions among NKG2D ligands, and the overexpression of c-Myc suppressed the expression of all NKG2D ligands, except MHC class I polyeptide-related sequence A. Furthermore, the alteration of c-Myc activity altered the susceptibility of K562 cells to NK cells. These results suggested that the overexpression of c-Myc may contribute to the immune escape of cancer cells and cell proliferation. Combined treatment with NK-based cancer immunotherapy and inhibition of c-Myc may achieve improved therapeutic results.

c-myc Expression: Keep the Noise Down!

  • Chung, Hye-Jung;Levens, David
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.157-166
    • /
    • 2005
  • The c-myc proto-oncogene encodes a nuclear protein that is deregulated and/or mutated in most human cancers. Acting primarily as an activator and sometimes as a repressor, MYC protein controls the synthesis of up to 10-15% of genes. The key MYC targets contributing to oncogenesis are incompletely enumerated and it is not known whether pathology arises from the expression of physiologic targets at abnormal levels or from the pathologic response of new target genes that are not normally regulated by MYC. Regardless of which, available evidence indicates that the level of MYC expression is an important determinant of MYC biology. The c-myc promoter has architectural and functional features that contribute to uniform expression and help to prevent or mitigate conditions that might otherwise create noisy expression. Those features include the use of an expanded proximal promoter, the averaging of input from dozens of transcription factors, and real-time feedback using the supercoil-deformable Far UpStream Element (FUSE) as physical sensor of ongoing transcriptional activity, and the FUSE binding protein (FBP) as well as the FBP interacting repressor (FIR) as effectors to enforce normal transcription from the c-myc promoter.

Immunohistochemical Detection of N-myc Gene Product by Using Antiserum Against Synthetic Peptide (항-펩타이드 항체를 이용한 암유전자 N-myc 산물의 면역조직화학적 검출)

  • Lee, Hyun-Chul;Lee, Wan-Joo;Ahn, Tai-Hew
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.2
    • /
    • pp.167-174
    • /
    • 1987
  • N-myc, a DNA sequence related to the oncogene c-myc, was found to be amplified in untreated primary neuroblastomas and the amplification appeared to be associated with advanced disease at diagnosis and rapid tumor progression. Synthetic peptides have been useful immunogens for generating antisera and monoclonal antibodies to a number of native proteins. In order to identify myc-related protein in the tumor cells, an antiserum against a synthetic hexapeptide (-Glu-Asp-Ile-Trp-Lys-Lys-), whose sequence corresponds to a part of the exon 2 of oncogene N-myc, was prepared by immunizing a rabbit with BSA-conjugated peptide. After ammonium sulfate precipitation and affinity column chromatography, it appeared to be specific to the peptide. Strong nuclear staining in immunoperoxidase method using this serum was observed in both human promyeloid leukemic cell line, HL-60(containing high c-myc copy number), and human neuroblastoma cell line, LA-N-5 (containing high N-myc copy number), whereas LA351 (human lymphoid cell line) cells did not react with the serum. This reaction was completely abrogated by incubating the antiserum with soluble excess peptide. These data suggest that the protein encoded by N-myc could be localized in the nucleus as c-myc protein and this antiserum can be used to detect myc-related tumor cells in clinical samples and to determine if the N-myc expression correlates with genomic amplification in cell lines, untreated primary tumors, and untreated metastases.

  • PDF

Silymarin-Mediated Degradation of c-Myc Contributes to the Inhibition of Cell Proliferation in Human Colorectal Cancer Cells

  • Eo, Hyun Ji;Jeong, Jin Boo;Koo, Jin Suk;Jeong, Hyung Jin
    • Korean Journal of Plant Resources
    • /
    • v.30 no.3
    • /
    • pp.265-271
    • /
    • 2017
  • In this study, we elucidated the molecular mechanism of silymarin by which silymarin may inhibits cell proliferation in human colorectal cancer cells in order to search the new potential anti-cancer target associated with the cell growth arrest. Silymarin reduced the level of c-Myc protein but not mRNA level indicating that silymarin-mediated downregulation of c-Myc may result from the proteasomal degradation. In the confirmation of silymarin-mediated c-Myc degradation, MG132 as a proteasome inhibitor attenuated c-Myc degradation by silymarin. In addition, silymarin phosphorylated the threonine-58 (Thr58) of c-Myc and the point mutation of Thr58 to alanine blocked its degradation by silymarin, which indicates that Thr58 phosphorylation may be an important modification for silymarin-mediated c-Myc degradation. We observed that the inhibition of ERK1/2, p38 and $GSK3{\beta}$ blocked the Thr58 phosphorylation and subsequent c-Myc degradation by silymarin. Finally, the point mutation of Thr58 to alanine attenuated silymarin-mediated inhibition of the cell growth. The results suggest that silymarin induces the cell growth arrest through c-Myc proteasomal degradation via ERK1/2, p38 and $GSK3{\beta}-dependent$ Thr58 phosphorylation.

Effects of camptothecin on the expression of DNA topoisomerase I and c-myc in HL-60 human leukemia cells (HL-60 사람 백혈병 세포에서 camptothecin이 DNA topoisomerase l과 c-myc의 발현에 미치는 영향)

  • 정인철;정대성;류경자;박장수;조무연
    • Journal of Life Science
    • /
    • v.10 no.6
    • /
    • pp.621-629
    • /
    • 2000
  • Camptothecin (CPT) is an antitumor alkaloid that has been isolated from the Chinese tree, Camptotheca acuminata. The cytotoxicity of CPT has been correlated to its inhibition of DNA topoisomerase (Topo) I by stabilizing drug-enzyme-DNA “cleavable complex" resulting in DNA single-strand breaks and DNA-protein crosslinks. This studies were designed to elucidate whether CPT regulates Topo I mediated by CPT in DNAs containing c-myc protooncogene. We have conducted experiments on Topo I purification, pUC-MYC I cloning and Topo I assay using electrophoresis, quantitative RT-PCR and Northern blotting techniques. CPT ingibited the relaxation activity of Topo I in pUC19 DNA at various concentrations (1-1000 $\mu$M), while it enhanced the cleavage of Topo I in the pUC-MYC I by forming a cleavable complex at relatively high concentrations (100-1000 $\mu$M). In HL-60 cells treated with CPT, the expression of c-myc gene was decreased over that in the control group with no changes in the expression of Topo I mRNA. Our results suggest that Topo I is the target of CPT cytotoxicity but it does not affect Topo I extression, and the suppression of c-myc mRNA expression by CPT is due to c-myc damage resulted from formation of a cleavable complex with CPT. CPT.

  • PDF

Genomic changes of c-myc, c-H-ras in benzo(a)pyrene and dimethylbenz(a)anthracene treated human lymphoblast NC-37 cells (Benzo(a)pyrene과 dimethylbenz(a)anthracene에 의한 사람 림프아세포(NC-37)의 c-myc, c-H-ras 유전자 변화)

  • Cho, Moo Youn;Eo, Wan Kyu;Lee, Sang Uk;Jeong, In cheol
    • Journal of Life Science
    • /
    • v.5 no.3
    • /
    • pp.105-116
    • /
    • 1995
  • To investigate genomic changes in c-myc gene by a chemical carcinogen, human lymphoblast NC-37 cells were exposed to benzo(a)pyrene(BP) and dimethylbenzanthracene(DMBA), and the c-myc gene expression was evaluated by Northern and Southern blot hybridization techniques. The results are as follows: When the genomic DNA of NC-37 cells exposed to several concentrations(1.25, 2.5 and 5ug/ml) of BP concentration. However, the c-myc gene was most significantly enhanced with 2.5ug/ml of BP. The expressions of c-myc gene in NC-37 cells was stimulated by BP and DMBA. Addition of TPA reduced the gene expression BP-treated cells, whereas it enhanced the gene expression in DMBA-treated cells. The expression of c-H-ras gene was slightly increased by treatment with BP and DMBA alone and in combination with TPA, however the magnitude of increase was not significantly different between each other. The expressions of c-myc c-H-ras genes in Burkitt's lymphoma cells were greater than those in NC-37 cells. When the DNA extracted from NC-37 cells exposed to various concentrations of BP were amplified by polymerase chain reaction using a primer set containing c-myc exon I, the amplified products were of the same size in all groups. To evaluate the BP toxicity in E.coli to which human c-myc gene-cloned pBR322 vector was inserted, Southern blot hybridization was conducted on c-myc genes digested with EcoRI/HindIII and Smal/Xbal restriction enzymes, and observing that in 2 ug/ml BP-treated cells a 3.5kb fragment was generated in addition to 1.3kb fragment which can be observed in normal cells. Direct nucleotide sequence analysis of polymerase chain reaction products showed a mutation of G$\longrightarrow$A transition at the Smal recognition site.

  • PDF

Inhibition of phosphodiesterase 4D decreases the malignant properties of DLD-1 colorectal cancer cells by repressing the AKT/mTOR/Myc signaling pathway

  • Dong Uk Kim;Jehyun Nam;Matthew D. Cha;Sang‑Woo Kim
    • Oncology Letters
    • /
    • v.17 no.3
    • /
    • pp.3589-3598
    • /
    • 2019
  • Colorectal cancer (CRC) is a complex disease involving numerous genetic abnormalities. One of the major characteristics of CRC is enhanced Wnt signaling caused by loss-of-function mutations in the adenomatous polyposis coli (APC) gene. Previously, it has been demonstrated that the majority of malignant phenotypes following APC deletion in adult murine small intestines could be rescued when Myc, a downstream target of the Wnt pathway, was deleted. This indicated that Myc is a critical regulator of CRC development following APC loss. Previous studies reported that cyclic adenosine 3',5'-monophosphate (cAMP) can influence the AKT/mammalian target of rapamycin (mTOR) survival pathway in cancer and Myc is a critical downstream molecule of AKT/mTOR signaling. Phosphodiesterase 4D (PDE4D), a member of the cAMP-specific PDE4 family, has been associated with drug resistance in CRC. However, the association between PDE4D and Myc remains unclear. To investigate the potential role of PDE4D in Myc regulation in CRC, the present study evaluated the expression levels of PDE4 subtypes in DLD-1 CRC cells. Additionally, the effects of PDE4 inhibitors on Myc expression and oncogenic properties were analyzed by western blot analysis, reverse transcription-quantitative polymerase chain reaction, colony formation and soft agar assays. It was demonstrated that cAMP/PDE4D signals serve a critical role in regulating Myc expression in DLD-1 CRC cells. Furthermore, PDE4D was identified to be a main hydrolyzer of cAMP and suppression of PDE4D using selective inhibitors of PDE4 increased intracellular cAMP levels, which resulted in a marked decrease in the oncogenic properties of DLD-1 cells, including colony formation, cell proliferation and anchorage-independent growth. Notably, the current data imply that cAMP represses Myc expression via the downregulation of AKT/mTOR signaling, which was abolished by high PDE4D activities in DLD-1 cells. Additionally, a natural polyphenol resveratrol in combination with forskolin elevated the concentration of cAMP and enhanced the expression of Myc and the malignant phenotype of DLD-1 cells, reproducing the effect of known chemical inhibitors of PDE4. In conclusion, the present study identified that cAMP/PDE4D signaling is a critical regulator of Myc expression in DLD-1 and possibly other CRC cells.

Identification and characterization of the MYC2 gene in relation to leaf senescence response in hybrid poplar (Populus alba × P. glandulosa) (현사시나무에서 MYC2 유전자의 분리 및 노화 지연에 관한 특성 구명)

  • Choi, Hyunmo;Bae, Eun-Kyung;Cho, Jin Seong;Lee, Hyoshin;Choi, Young-Im
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.409-415
    • /
    • 2017
  • The vegetation period of trees might be prolonged by the delay of the leaf senescence in autumn. Thus, we focused on the generation of senescence-delayed transgenic trees to enhance biomass production. The PagMYC2, a gene containing the basic helix-loop-helix domain, was selected as a candidate for a senescence-delayed transgenic tree. The PagMYC2 gene was specifically induced after treatment with phytohormone jasmonic acid, and upregulated by abiotic stresses such as salinity, osmotic pressure and a low temperature. The constitutive overexpression of the PagMYC2 delayed the leaf senescence and inhibited chlorophyll degradation in the transgenic poplars. Leaf senescence analysis was performed in the leaf tissues of the PagMYC2-over-expression transgenic poplars. The transgenic poplars exhibited higher photochemical efficiency than did a wild type plant under a short-day condition (6 hours light/18 hours darkness) or a low temperature condition ($15^{\circ}C$) that was similar to the weather conditions of autumn. These results suggest that the PagMYC2 is a useful genetic resource to improve biomass production, which is able to sustain growth with senescence-delayed leaves for a long time in autumn.