• 제목/요약/키워드: MW Model

검색결과 383건 처리시간 0.029초

부유식 해상풍력발전기 타워의 초기 형상에 따른 공진 해석 (Resonance Analysis According to Initial Tower Design for Floating Offshore Wind Turbine)

  • 김준배;신현경
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.57-64
    • /
    • 2018
  • To maximize power generation and reduce the construction cost of a commercial utility-grade wind turbine, the size of the wind turbine should be large. The initial design of the 12 MW University of Ulsan(UOU) Floating Offshore Wind Turbine(FOWT) was carried out based on the 5 MW National Renewable Energy Laboratory(NREL) offshore wind turbine model. The existing 5 MW NREL offshore wind turbines have been expanded to 12 MW UOU FOWT using the geometric law of similarity and then redesigned for each factor. The resonance of the tower is the most important dynamic responses of a wind turbine, and it should be designed by avoiding resonance due to cyclic load during turbine operations. The natural frequency of the tower needs to avoid being within the frequency range corresponding to the rotational speed of the blades, 1P, and the blade passing frequency, 3P. To avoid resonance, vibration can be reduced by modifying the stiffness or mass. The direct expansion of the 5 MW wind turbine support structure caused a resonance problem with the tower of the 12 MW FOWT and the tower length and diameter was adjusted to avoid a match of the first natural frequency and 3P excitation of the tower.

다중 시계열 모델을 이용한 단기 부하 무효전력 예측 (Short-term Reactive Load Forecasting using Multiple Time-Series Model)

  • 박우현;이윤호;정창호;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.199-201
    • /
    • 2002
  • This paper showed that there exists a non-linear relationship between MVAR and MW, and the rage of the threshold value of MVAR is 56 to 67. Also, we tried the one-hour ahead forecasting model of MVAR using the MW as the explanary variable.

  • PDF

이중 3상 시스템과 모듈러를 갖는 MW급 해상용 풍력발전기의 무정지 기능을 위한 권선 체결방식에 관한 연구 (Investigation of Winding Connections for Fault-Tolerant of MW Class Offshore Wind Generator with Dual 3-Phase System and Modular)

  • 서장호
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1108-1114
    • /
    • 2013
  • This paper presents a new winding topology for MW class offshore wind generator having modular and dual 3-phase. Based on proposed simplified relationship between magnetic flux and phase current in the air gap, several new windings for modular and dual 3-phase are made. In case of one inverter operation or faulty operation, the proposed model can have balanced 3-phase induced voltage whereas the conventional generator with modular winding has unbalanced induced voltage, which can be important issue in offshore generator. The model was applied into 6MW prototype machine with dual 3-phase. Using finite element analysis, induced voltage, inductance were investigated. The results show that the proposed modular winding can be applicable to dual inverter system with electrically balanced voltage.

3MWth급 순환유동층 바이오매스 가스화공정 개발 (Development of 3MWth Circulating Fluidized Bed Biomass Gasifier)

  • 이정우;송재헌;이동윤;최영태;양원;이은도
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.231-233
    • /
    • 2012
  • Circulating Fluidized Bed (CFB) is a technically and economically proven technology for boiler systems and large CFB coal boilers are making inroads into the domestic power boiler market. For biomass gasification, it is also considered as a very promising technology for commercial. Due to the lack of experiences of a large scale CFB gasifier, however, any large scale CFB gasifiers are hard to in Korea in spite of fast-growing demand of domestic market. In this study, a 3 $MW_{th}$ CFB gasifier was developed for biomass gasification. The CFB gasifier consists of interconnected fast and bubbling fluidized bed reactors including unique features for in-situ tar removal. Various numerical and experimental approaches will be presented such as basic modeling works, investigation of hydrodynamics with a cold model, computational particle fluid dynamics and experiments in the 3 MWth gasifier.

  • PDF

Comparison of simulated platform dynamics in steady/dynamic winds and irregular waves for OC4 semi-submersible 5MW wind-turbine against DeepCwind model-test results

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.1-21
    • /
    • 2016
  • The global performance of the 5 MW OC4 semisubmersible floating wind turbine in random waves with or without steady/dynamic winds is numerically simulated by using the turbine-floater-mooring fully coupled dynamic analysis program FAST-CHARM3D in time domain. The numerical simulations are based on the complete second-order diffraction/radiation potential formulations along with nonlinear viscous-drag force estimations at the body's instantaneous position. The sensitivity of hull motions and mooring dynamics with varying wave-kinematics extrapolation methods above MWL(mean-water level) and column drag coefficients is investigated. The effects of steady and dynamic winds are also illustrated. When dynamic wind is added to the irregular waves, it additionally introduces low-frequency wind loading and aerodynamic damping. The numerically simulated results for the 5 MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model-test results by Technip/NREL/UMaine. Those numerical-simulation results have good correlation with experimental results for all the cases considered.

추계학적 지진동 모사에서 유한단층 모델의 민감도 분석 (Sensitivity Analysis of Finite Fault Model in Stochastic Ground Motion Simulations)

  • 이상현;이준기
    • 한국지진공학회논문집
    • /
    • 제28권3호
    • /
    • pp.159-164
    • /
    • 2024
  • Recent earthquakes in Korea, like Gyeongju and Pohang, have highlighted the need for accurate seismic hazard assessment. The lack of substantial ground motion data necessitates stochastic simulation methods, traditionally used with a simplistic point-source assumption. However, as earthquake magnitude increases, the influence of finite faults grows, demanding the adoption of finite faults in simulations for accurate ground motion estimates. We analyzed variations in simulated ground motions with and without the finite fault method for earthquakes with magnitude (Mw) ranging from 5.0 to 7.0, comparing pseudo-spectral acceleration. We also studied how slip distribution and hypocenter location affect simulations for a virtual earthquake that mimics the Gyeongju earthquake with Mw 5.4. Our findings reveal that finite fault effects become significant at magnitudes above Mw 5.8, particularly at high frequencies. Notably, near the hypocenter, the virtual earthquake's ground motion significantly changes using a finite fault model, especially with heterogeneous slip distribution. Therefore, applying finite fault models is crucial for simulating ground motions of large earthquakes (Mw ≥ 5.8 magnitude). Moreover, for accurate simulations of actual earthquakes with complex rupture processes having strong localized slips, incorporating finite faults is essential even for more minor earthquakes.

Model Test of a TLP Type of Floating Offshore Wind Turbine, Part II

  • Dam, Pham Thanh;Seo, Byoung-Cheon;Kim, Jae-Hun;Shin, Jae-Wan;Shin, Hyunkyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.38.2-38.2
    • /
    • 2011
  • A large number of offshore wind turbines with fixed foundations have been installed in water depths up to 30 meters supporting 3-5MW wind turbines. Some floating platform concepts of offshore wind turbines were designed to be suitable for deployment in water depths greater than 60 meters. However the optimal design of this system in water depth 50 meters remains unknown. In this paper, a 5-MW wind turbine located on a TLP type platform was suggested for installation in this water depth. It is moored by a taut mooring line. For controlling the wind turbine always be operated at the upwind direction, one yaw controlling was attached at the tower. To study motion characteristics of this platform, a model was built with a 1/128 scale ratio. The model test was carried out in various conditions, including waves, winds and rotating rotor effect in the Ocean Engineering Wide Tank of the University Of Ulsan (UOU). The characteristic motions of the TLP platform were captured and the effective RAOs were obtained.

  • PDF

Bladed S/W를 이용한 2MW급 풍력터빈에 대한 피치 PI 제어기의 계단응답 고찰 (An Investigation on Step Responses of Pitch PI Controller for a 2MW Wind Turbine Using Bladed S/W)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.59-64
    • /
    • 2015
  • The pitch control system in wind turbines becomes more and more important as the wind turbines are larger in multi-MW size. PI controller has been applied in most pitch controllers and it has been known that gain-scheduling is essential for pitch control of wind turbines. A demo model of 2 MW wind turbine which represents the whole dynamics of wind turbine including dynamic behaviors of blade, tower and rotational shaft is given in the commercial Bladed S/W for real wind turbines. In this paper, some results on step responses of the pitch PI controller and effectiveness of gain-scheduled pitch PI controller are presented through the Bladed S/W for the 2 MW wind turbine.

Genetic and Phenotypic Parameter Estimates of Body Weight at Different Ages and Yearling Fleece Weight in Markhoz Goats

  • Rashidi, A.;Sheikahmadi, M.;Rostamzadeh, J.;Shrestha, J.N.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권10호
    • /
    • pp.1395-1403
    • /
    • 2008
  • The objective of the present study was to estimate genetic parameters for economic traits in Markhoz goats. Data collected from 1993 to 2006 by the Markhoz goat Performance Testing Station in Sanandaj, Iran, were analyzed. The traits recorded as body weight performance at birth (BW), weaning (WW), six month (6MW), nine month (9MW), yearling (YW) and yearling fleece weight (YFW) were investigated. Least square analyses were used for estimation of environmental effects. Genetic parameters were estimated with single and multi trait analysis using restricted maximum likelihood (REML) procedures, under animal models. By ignoring or including maternal additive genetic effects and maternal permanent environmental effects, five different models were fitted for each trait. The effects of sex, type of birth, age of dam and year of birth on the all body weights were significant (p<0.01), but had no effects on YFW except year of birth. Age of kids had significant influences on WW and 6MW (p<0.01). A log likelihood ratio test was carried out for choosing the most suitable model for each trait. Total heritability estimates for YFW and growth traits varied from 0.16 for YFW and WW to 0.41 for YW. For all traits, maternal heritability was lower than direct heritability, ranging from 0.06 for BW to 0.01 for 6MW and 9MW. The magnitude of $c^2$ was more substantial for BW than the others, and relative importance was reduced from 0.12 for BW to 0.04 for 9MW. The direct additive genetic correlations estimates were positive and varied from 0.21 between BW-YW to 0.96 between WW-6MW. Direct additive genetic correlations between YFW and body weight traits were positive and ranged from 0.14 between BW-YFW to 0.67 between 6MW-YFW. For all traits, the corresponding estimates for phenotypic correlation were positive and lower than genetic correlations. The maternal additive genetic correlations between various traits were varied and ranged from -0.19 between 9MW-YFW to 0.96 between 6MW-9MW. The estimates of the maternal permanent environmental correlations between various traits were positive and ranged from 0.33 between WW-YFW to 0.93 between WW-6MW. Also, the environmental correlations between various traits ranged from 0.01 between BW-YFW and WW-YFW to 0.70 between 9MW-YW. Estimates of genetic parameters for various traits in this study confirm that selection should be applied on WW for genetic improvement in Markhoz goats.

Structural design and evaluation of a 3MW class wind turbine blade

  • Kim, Bum-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.154-161
    • /
    • 2014
  • This research presents results of structural designs and evaluations for 3MW Wind Turbine Blade by FEM analysis. After the GFRP model was designed as a baseline model, failure check by Puck's failure criterion and buckling analysis were accomplished to verify safety of wind turbine blade in the critical design load case. Moreover, applicability of two kinds of carbon spar cap model, was studied by comparing total mass, price and tip deflection to the GFRP model. The results showed that the GFRP model had sufficient structural integrity in the critical design load case, and the carbon spar cap model could be a reasonable solution to reduce weights, tip deflections.