• Title/Summary/Keyword: MVOCs (Microbial Volatile Organic Compounds)

Search Result 2, Processing Time 0.018 seconds

Investigation on the Cause of Malodor through the Reproduction of Chemicals (화학물질의 재현을 통한 악취발생원인 규명)

  • Park, Sang Jun;Oh, Young Hwan;Jo, Bo Yeon;Lee, Jae Shin;Kim, Eui Yong
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms and through microorganisms coexisting with each other to form a biofilm on the evaporator surface. A bacterium, Methylobacterium aquaticum, can form a biofilm on the evaporator surface. The biofilm was composed of 45.79% C (Carbon), 42.36% O (Oxygen), 1.85% Na (Sodium), 5.42% Al (Aluminum), 1.39% P (Phosphorus), 0.74% Cl (Chlorine) and 2.45% K (Potassium). This result matches the composition of the biofilm formed on the surface of the used evaporator. It was determined that sulfur compounds (Hydrogen sulfide, Dimethyl sulfide) and organic acids (n-Butyric acid, n-Valeric acid, iso-Valeric acid) in the air which was blown into the automobile were generated by Methylobacterium aquaticum and Aspergillus versicolor, respectively. On the other hand, volatile organic compounds (Toluene, Xylene, 2-Ethylhexanol, 2-Phenyl- 2-propanol, Ethylbenzene) were not found. It is estimated that the reason is due to the low concentration of generated MVOCs or is caused by the change of some MVOCs depending on the nutrients (medium).

Determination of Malodor-causing Chemicals Produced by Microorganisms Inside Automobile (차량 내 미생물에 의해 생성되는 악취유발 화학물질의 분석)

  • Park, SangJun;Kim, EuiYong
    • KSBB Journal
    • /
    • v.29 no.2
    • /
    • pp.118-123
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms getting into an air-conditioner when it is operating. Chemicals such as hydrogen sulfide, dimethyl sulfide, nbutyric acid, n-valeric acid, iso-valeric acid, n-octanol and toluene were detected above the odor threshold inside the automobile. The characteristics of a funky odor in the air blown into the automobile were due to detected sulfur compounds (hydrogen sulfide and dimethyl sulfide). Dimethyl sulfide was produced by microorganisms such as Aspergillus versicolor, Methylobacterium aquaticum, Herbaspirillum sp. and Acidovorax sp. In addition, the characteristics of a sour odor in the air blown into the automobile were due to detected organic acids (n-butyric acid, n-valeric acid and iso-valeric acid). N-valeric acid and iso-valeric acid were generated from Aspergillus versicolor, while iso-valeric acid was produced by Methylobacterium aquaticum. In addition, the odor intensity of the air blown into the automobile was affected by the concentration of detected sulfur compounds and organic acids. On the other hand, it is estimated that chemicals such as hydrogen sulfide, n-octanol and n-butyric acid detected in the air blown into the automobile were produced by non-identified species of microorganisms.