• Title/Summary/Keyword: MVN neuron

Search Result 4, Processing Time 0.018 seconds

Roles of $Ca^{2+}-Activated\;K^+$ Conductances on Spontaneous Firing Patterns of Isolated Rat Medial Vestibular Nucleus Neurons

  • Chun, Sang-Woo;Jun, Jae-Woo;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • To investigate the contributions of intrinsic membrane properties to the spontaneous activity of medial vestibular nucleus (MVN) neurons, we assessed the effects of blocking large and small calcium-activated potassium channels by means of patch clamp recordings. Almost all the MVN neurons recorded in neonatal $(P13{\sim}P17)$ rat were shown to have either a single deep after-hyperpolarization (AHP; type A cells), or an early fast and a delayed slow AHP (type B cells). Among the recorded MVN cells, immature action potential shapes were found. Immature type A cell showed single uniform AHP and immature B cell showed a lack of the early fast AHP, and the delayed AHP was separated from the repolarization phase of the spike by a period of isopotentiality. Application of apamin and charybdotoxin (CTX), which selectively block the small and large calcium-activated potassium channels, respectively, resulted in significant changes in spontaneous firings. In both type A and type B cells, CTX (20 nM) resulted in a significant increase in spike frequency but did not induce bursting activity. By contrast, apamin (300 nM) selectively abolished the delayed slow AHP and induced bursting activity in type B cells. Apamin had no effect on the spike frequency of type A cells. These data suggest that there are differential roles of apamin and CTX sensitive potassium conductances in spontaneous firing patterns of MVN neurons, and these conductances are important in regulating the intrinsic rhythmicity and excitability.

  • PDF

Effects of Electroacupuncture on the excitability in Medial Vestibular Nuclei of Rats (흰쥐의 내측 전정신경핵 흥분성에 대한 전침자극의 효과)

  • Kim, Jae-Hyo;Lee, Sung-Ho;Sohn, In-Chul;Kim, Young-Sun;Kim, Min-Sun
    • Korean Journal of Acupuncture
    • /
    • v.26 no.3
    • /
    • pp.27-42
    • /
    • 2009
  • Objectives : The vestibular system detects head movement and serve to regulate and maintain the equilibrium and orientation of the body. It is known that the vestibular imbalance leads to vestibular symptoms such as nausea, vomiting, vertigo and postural disturbance. The objectives of the present study were to examine a modification of the dynamic activities of medial vestibular nucleus (MVN) neurons following electroacupuncture (EA) of GB43 (Hyepgye). Methods : In Sprague-Dawley rats weighing $250{\sim}300g$, dynamic responses induced by sinusoidal whole body rotation about vertical axis at 0.2 Hz were observed in MVN of rats during EA of GB43 (Hyepgye) with 0.2 ms, 40 Hz and $600{\pm}200{\mu}A$. Also, expression of cFos protein was observed 2 hours after EA for 30 mins. Results : In dynamic response of vestibular neuron, the excitatory or inhibitory responses of gain were predominant in the ipsilateral MVN neurons during EA but not predominant in the contralateral MVN. Most neurons showing decreased gain were classified to inhibitory responses of spontaneous firing discharge during EA and ones showing increased gain were classified to excitatory response of spontaneous firing discharge during EA. Also, EA of the left GB43 (Hyepgye) for 30 mins produced the expression of cFos protein in MVN, inferior olive (IO) and solitary tract nuclei (SOL). Spatial expressions of cFos protein were predominant in the contralateral MVN, ipsilateral IO and bilateral SOL. Conclusion : These results suggest that the excitability of MVN neurons was influenced by EA of GB43 (Hyepgye) and EA may be related to the convergence on MVN.

  • PDF

Correlation Between Electrical Activity of Type I Neuron and c-Fos Expression in the Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats

  • Park, Byung-Rim;Doh, Nam-Yong;Kim, Min-Sun;Chun, Sang-Woo;Lee, Moon-Young;Lee, Sung-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.505-513
    • /
    • 1997
  • To search the correlations between electrical activity and c-Fos expression in the process of vestibular compensation, we examined the changes of those two parameters in the medial vestibular nuclei (MVN) of unilaterally labyrinthectomized (ULX) rats. Spontaneous nystagmus with fast component toward the intact side disappeared gradually within 48 hours. Fourty eight hours after ULX, directional preponderance of the eye movement induced by sinusoidal rotation of the whole body which represents the symmetry of bilateral vestibular functions showed less than 20% by rotation of 0.1, 0.2, and 0.5 Hz, indicating the recovery of symmetry in bilateral vestibular functions. Six hours after ULX, spontaneous electrical activity of type I neurons resulted in asymmetry between bilateral MVN, however, the asymmetry of the electrical activity was decreased 48 hours after ULX. Immunocytochemical staining revealed that ULX produced dramatic induction of c-Fos positive cells in the MVN bilaterally. The number of c-Fos immunoreactive cells in the contralateral MVN was significantly higher than those in the ipsilateral MVN (p<0.0001) 2 hours after ULX. Thereafter, the number of c-Fos positive cells decreased bilaterally and was slightly, but not significantly higher in the ipsilateral MVN at 48 hours after ULX. The present results suggest that both electrical activity of type I neurons and c-Fos expression in MVN following ULX will reflect underlying mechanisms of recovery process of vestibular compensation.

  • PDF

Effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin on the Neuronal Activity of Medial Vestibular Nuclear Neurons

  • Jang, Su-Jeong;Jeong, Han-Seong;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.199-205
    • /
    • 2009
  • This study was designed to investigate direct effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin, a $\delta$-opioid receptor agonist on the neuronal activity of medial vestibular nuclear (MVN) neurons by whole-cell configuration patch clamp experiments. The spike frequency of MVN neuron was increased to $9.50{\pm}0.55$ (P<0.05) and $10.56{\pm}0.66$ (P<0.05) by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin from the control level of $8.05{\pm}0.55$ spikes/sec, respectively (n=18). The resting membrane potential of the neurons was increased to $-37.86{\pm}0.92$ and $-36.97{\pm}0.97$ (P<0.05) from $-38.74{\pm}1.13\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The amplitude of afterhyperpolarization was decreased to $23.78{\pm}0.65$ and $21.67{\pm}0.89$ (P<0.05) from $23.73{\pm}0.53\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The spike width was changed to $2.22{\pm}0.08$ and $2.24{\pm}0.07$ from $2.20{\pm}0.08\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. After pretreatment of naltrindole, a highly selective 8-opioid receptor antagonist, [D-$Pen^2$, D-$Pen^5$]-enkephalin did not change firing rate, resting membrane potential, afterhyperpolarization amplitude, and spike width of MVN neurons. The above experimental results suggest that [D-$Pen^2$, D-$Pen^5$]-enkephalin increases the neuronal activity of MVN neurons via inhibition of calcium-dependent potassium currents underlying the afterhyperpolarization.

  • PDF