• Title/Summary/Keyword: MVDR(Minimum Variance Distortionless Response)

Search Result 38, Processing Time 0.024 seconds

An Active Interference Cancellation Technique for Removing Jamming Signals in Array Antenna GPS Receivers (GPS 수신기에서 간섭신호에 대응하기 위한 배열 안테나기반 능동 간섭 제거 방안)

  • Jeong, Eui-Rim;Won, Hyun-Hee;Cho, Sung-Woo;Ahn, Byoung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1539-1545
    • /
    • 2015
  • GPS (global positioning system) is a popular system that provides location information by measuring arrival time difference at the receiver between several GPS satellite signals. GPS is widely used in commercial area as well as military systems. Reliable GPS signal reception is more important in the military systems. However, since the carrier frequencies of the GPS signals are well known, the GPS receivers are vulnerable to intentional jamming attacks. To remove jammers but maintain GPS signals at the received signals, a popular technique is an adaptive beam steering method based on array antenna. Among adaptive beam steering techniques, this paper considers MVDR (minimum variance distortionless response) algorithm, and proposes a new adaptive technique that preserves the received signals at desired direction, but removes the jamming signals adaptively. The performance of the proposed method is verified through computer simulation.

Performance Analysis of TPMS Beamformer According to Variance of Antenna Interelement Spacing (안테나 간격 변화에 대한 TPMS 빔형성기 성능분석)

  • Choi, Byung-Sang;Kim, Seong-Min;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.907-915
    • /
    • 2013
  • Tire Pressure Monitoring System (TPMS) is an auxiliary safety system for recognizing the condition of tires based on the pressure and temperature data transmitted from the sensor unit installed on a tire of the vehicle. Using TPMS, a driver can frequently check the state of tires and it aids to maintain the optimum running condition of the vehicle. Since TPMS must utilize the wireless communication technique to transmit data from a sensor unit to a signal processing unit installed in the vehicle, it suffers from interference signals caused by various external electrical or electronic devices. In order to suppress high-power interference signals, we employ beamforming techniques based on the uniform linear antenna array. As the number of the antennas is increased, the performance of the interference suppression is improved. However, there is the limit of the number of antennas, installed in the center of a vehicle, because of its size. In this paper, we compare and analyze the performance of the beamformer, when reducing the interelement spacing of antennas, to increase the number of the receiving antennas. For the performance analysis of the beamformers, we consider the switching beamformer and minimum-variance distortionless-response (MVDR) beamformer for TPMS, recently proposed.

Waveguide Spatial Interference Filtering in Adaptive Matched Field Processing (적응 정합장처리에서 도파관 공간간섭 필터링)

  • 김재수;김성일;신기철;김영규;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.288-295
    • /
    • 2004
  • Detection and localization of a slow and quiet target in shallow water environments is a challenging problem for which it is well known that snapshot is deficient because of a fast and strong interferer. This paper presents waveguide interference filtering technique that mitigate strong interferer problems in adaptive matched field processing. MCM (multiple constraint method) based on NDC (null direction constraint) has been proposed for new spatial interferer filter. MCM-NDC using replica force a interferer component to be filtered through CSDM (cross-spectral density matrix). This filtering have an effect on sidelobe reduction and restoring of signal gain of a quiet target. This technique was applied to a simulation on Pekeris waveguide and vertical array data from MAPLE03 (matched acoustic properties and localization experiment) in the East Sea and was shown to improve SBNR (signal-to-background-and-noise ratio) over the standard MVDR (minimum-variance distortionless response) and NSP (null space projection) technique.

Performance Evaluation of Satellite System Based on Transmission Beamformer (송신 빔형성기 기반의 위성 시스템 구조 성능평가)

  • Mun, Ji-Youn;Hwang, Myeong-Hwan;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.713-720
    • /
    • 2018
  • The Signal Intelligence (SIGINT) system based on Angle-of-Arrival(AOA) estimation, interference suppression, and transmission beamforming techniques is a cutting edge technology for efficiently collecting various signal information. In this paper, we present the efficient structure of a satellite system consisted of an AOA estimator, an adaptive beamformer, a signal processing and D/B unit, and a transmission beamformer, for collecting signal information. For accurately estimating AOAs of various signals, efficiently suppressing interference or jamming signals, and efficiently transmitting the collected information or data, we employ Multiple Signal Classification (MUSIC), Minimum Variance Distortionless Response (MVDR), and Minimum Mean Square Error (MMSE) algorithms, respectively. Also, we evaluate and analysis the performance of the presented satellite system through the computer simulation.

Performance Analysis of Adaptive Beamforming System Based on Planar Array Antenna (평면 배열 안테나 기반의 적응 빔형성 시스템 성능 분석)

  • Mun, Ji-Youn;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1207-1212
    • /
    • 2018
  • The signal intelligence (SIGINT) technology is actively used for collecting various data, in a number of fields, including a military industry. In order to collect the signal information and data and to transmit/receive the collected data efficiently, the accurate angle-of-arrival (AOA) information is required and communication disturbance from the interference or jamming signal should be minimized. In this paper, we present the structure of an adaptive beam-forming satellite system based on the planar array antenna, for collecting and transmitting/receiving the signal information and data efficiently. The presented adaptive beam-forming system consists of an antenna in the form of a planar array, an AOA estimator based on the Multiple Signal Classification (MUSIC) algorithm, an adaptive Minimum Variance Distortionless Response (MVDR) interference canceler, a signal processing and D/B unit, and a transmission beamformer based on Minimum mean Square Error (MMSE). In addition, through the computer simulation, we evaluate and analyze the performance of the proposed system.

Simulink Model Implementation of MVDR Adaptive Beamformer for GPS Anti-Jamming

  • Han, Jeongwoo;Park, Hoon;Kim, Bokki;Han, Jin-Hee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2020
  • For the purpose of development of anti-jamming GPS receiver we have developed an anti-jamming algorithm and its Simulink implementation model. The algorithm used here is a form of Space-Time Adaptive Processing (STAP) filter which is well known as an effective way to remove wideband jamming signals. We have chosen Minimum Variance Distortionless Response (MVDR) block-adaptive beamforming algorithm for our development since it can provide relatively fast convergence speed to reach optimal weights, stable and high suppression capability on various types of jamming signals. We will show modeling results for this MVDR type adaptive beamformer and some simulation results. We also show the integrity of the demodulated satellite signals and the accuracy of resulting navigation solutions after anti-jamming operation.

Performance Analysis of GPS Anti-Jamming Method Using Dual-Polarized Antenna Array in the Presence of Steering Vector Errors

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2020
  • The antenna arrays are known to be effective for GPS anti-jamming and the performance can be improved further if a dual-polarized antenna array is used. However, when the Minimum Variance Distortionless Response (MVDR) beamformer is used as a signal processing algorithm for the dual-polarized antenna array, the anti-jamming performance can degrade in the presence of errors in the steering vector that is a key factor of the MVDR beamformer. Therefore, in this paper, the effect of the steering vector error on the anti-jamming performance of the dual-polarized antenna array is analyzed by simulations and the result is compared to that of the single-polarized antenna array.

Performance Analysis of Uplink Beamforming using Systolic Array Structure in W-CDMA Systems (W-CDMA용 Systolic 어레이 구조를 갖는 상향링크 빔형성기법 성능 분석)

  • 이호중;서상우;이원철
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.25-28
    • /
    • 2002
  • 본 논문에서는 W-CDMA(Wide-Code Division Mul-tiple Access)용 Systolic 어레이 구조를 잣는 상향링크 빔형성기법에 대한 성능 분석을 하였다. 적응 어레이 안테나와 Systolic 구조의 MVDR(Minimum Variance Distortionless Response) 알고리즘을 사용하여 구해진 가중치 벡터를 이용하여 원하는 사용자의 방향으로 빔을 형성하고 원하지 않는 사용자의 방향으로는 null을 형성하는 공간필터를 적용하여 W-CDMA 상향링크에서 다중 경로 페이딩과 다중 접속 간섭의 증가에 따른 수신 성능을 분석하였다. 그리고, 안테나 시스템에서 사용되는 가중벡터를 갱신하기 위해 Systolic 구조의 MVDR과 역방향 파일럿 채널을 이용하는 QR-RLS(QR-Recursive Least Squares) 알고리즘을 적용하였다. 본 논문에서는 빔 형성기에 사용하기 위한 역행렬의 계산과 정에 Systolic 어레이 구조를 적용하여 병렬적인 고속처리가 가능한 방법과 효율적인 계산과정을 위해 MVDR 과 QR-RLS 알고리즘을 적용한 공간 필터링의 성능을 소개한다.

  • PDF

Optimization for the direction of arrival estimation based on single acoustic pressure gradient vector sensor

  • Wang, Xu-Hu;Chen, Jian-Feng;Han, Jing;Jiao, Ya-Meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.74-86
    • /
    • 2014
  • The optimization techniques are explored in the direction of arrival (DOA) estimation based on single acoustic pressure gradient vector sensor (APGVS). By analyzing the working principle and measurement errors of the APGVS, acoustic intensity approaches (AI) and the minimum variance distortionless response beamforming approach based on single APGVS (VMVDR) are deduced. The radius to wavelength ratio of the APGVS must be not bigger than 0.1 in the actual application, otherwise its DOA estimation performance will degrade significantly. To improve the robustness and estimation performance of the DOA estimation approaches based on single APGVS, two modified processing approaches based on single APGVS are presented. Simulation and lake trial results indicate that the performance of the modified approaches based on single APGVS are better than AI and VMVDR approaches based on single APGVS when the radius to wavelength ratio is not bigger than 0.1, and the two modified DOA estimation methods have excellent estimation performance when the radius to wavelength ratio is bigger than 0.1.

MVDR Beamformer for High Frequency Resolution Using Subband Decomposition (부대역을 이용한 MVDR 빔형성기의 주파수 분해능 향상 기법)

  • 이장식;박도현;김정수;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2002
  • It is well known that the MDVR beamforming outperforms the conventional delay-sum beamformer in the sense of noise rejection and bearing resolution. However, the MDVR method requires long observation time to achieve high frequency resolution. The STMV method uses the steered covariance matrix of sensor data, so it has an ability to form an adaptive weight vector from a single time-series snapshot. But it uses the same weight vector across all frequencies. In this paper, we propose an SSMV method. The basic idea of the SSMV method is to decompose a full frequency band into several subbands to acquire a weight vector for each subband, individually. Also the wrap may be divided into several subarrays in order to reduce a computational load and the bandwidth of each subband. Simulations using real sea trial data show that the proposed SSMV method has good performance with short observation time.