• Title/Summary/Keyword: MUSLE runoff factor

Search Result 2, Processing Time 0.023 seconds

Occurrence and Behavior Analysis of Soil Erosion by Applying Coefficient and Exponent of MUSLE Runoff Factor Depending on Land Use (국내 토지이용별 MUSLE 유출인자의 계수 및 지수 적용을 통한 토양유실 발생 및 거동 분석)

  • Lee, Seoro;Lee, Gwanjae;Yang, Dongseok;Choi, Yujin;Lim, Kyoung Jae;Jang, Won Seok
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.98-106
    • /
    • 2019
  • The coefficient and exponent of the MUSLE(Modified Universal Soil Loss Equation) runoff factor in the SWAT(Soil and Water Assessment Tool) model are 11.8 and 0.56 respectively, which are equally applied to the estimation of soil erosion regardless of land use. they could derive overestimation or underestimation of soil erosion, which can cause problems in the selection of soil erosion-vulnerable area and evaluation of reduction management. However, there are no studies about the estimation of coefficients and exponent for the MUSLE runoff factor by land use and their applicability to the SWAT model. Thus, in order to predict soil erosion and sediment behavior accurately through SWAT model, it is necessary to estimate the coefficient and exponent of the MUSLE runoff factor by land use and evaluate its applicability. In this study, the coefficient and exponent of MUSLE runoff factor by land use were estimated for Gaa-cheon Watershed, and the differences in soil erosion and sediment from SWAT model were analyzed. The coefficient and exponent of runoff factor estimated by this study well reflected the characteristics of soil erosion in domestic highland watershed. Therefore, in order to apply the MUSLE which developed based on observed data of US agricultural basin to the domestic watershed, it is considered that a sufficient modification and supplementation process for the coefficient and exponent of the MUSLE runoff factor depending on land use is necessary. The results of this study can be used as a basic data for selecting soil erosion vulnerable area in the non-point source management areas and establishing and evaluating soil erosion reduction management.

Application of RUSLE and MUSLE for Prediction of Soil Loss in Small Mountainous Basin (산지소유역의 토사유실량 예측을 위한 RUSLE와 MUSLE 모형의 적용성 평가)

  • Jung, Yu-Gyeong;Lee, Sang-Won;Lee, Ki-Hwan;Park, Ki-Young;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • This study aims to predict the amount of soil loss from Mt. Palgong's small basin, by using influence factors derived from related models, including RUSLE and MUSLE models, and verify the validity of the model through a comparative analysis of the predicted values and measured values, and the results are as follows: The amount of soil loss were greatly affected by LS factor. In comparison with the measured value of the amount of total soil loss, the predicted values by the two models (RUSLE and MUSLE), appeared to be higher than those of the measured soil loss. Predicted values by RUSLE were closer to values of measured soil loss than those of MUSLE. However, coefficient of variation of MUSLE were lower, but two model's coefficient of variation in similar partial patterns in the prediction of soil loss. RUSLE and MUSLE, prediction soil loss models, proved to be appropriate for use in small mountainous basin. To improve accuracy of prediction of soil loss models, more effort should be directed to collect more data on rainfall-runoff interaction and continuous studies to find more detailed influence factors to be used in soil loss model such as RUSLE and MUSLE.