• Title/Summary/Keyword: MUSIC technique

Search Result 218, Processing Time 0.039 seconds

Performance Analysis of MUSIC-Based Jammer DOA Estimation Technique for a Misaligned Antenna Array

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.7-13
    • /
    • 2020
  • As a countermeasure against the threat of jamming which can disrupt operation of the Global Positioning System (GPS) receivers, various kinds of technique to estimate the Direction-Of-Arrivals (DOAs) of incoming jamming signals have been widely studied, and among them, the MUltiple SIgnal Classification (MUSIC) algorithm is known to provide very high resolution. However, since the previous studies regarding the MUSIC algorithm does not consider the orientation of each antenna element of antenna arrays, there is a possibility that DOA estimation performance degrades in the case of a misaligned antenna array whose antenna elements are not oriented along the same direction. As an effort to solve this problem, there exists a previous work which presents an MUSIC-based method for DOA estimation. However, the error between the real and measured values of each antenna orientation is not taken into consideration. Therefore, in this paper, the effect of the aforementioned error on the DOA estimation performance in the case of a misaligned antenna array is analyzed by simulations.

Super-resolution in Music Score Images by Instance Normalization

  • Tran, Minh-Trieu;Lee, Guee-Sang
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.64-71
    • /
    • 2019
  • The performance of an OMR (Optical Music Recognition) system is usually determined by the characterizing features of the input music score images. Low resolution is one of the main factors leading to degraded image quality. In this paper, we handle the low-resolution problem using the super-resolution technique. We propose the use of a deep neural network with instance normalization to improve the quality of music score images. We apply instance normalization which has proven to be beneficial in single image enhancement. It works better than batch normalization, which shows the effectiveness of shifting the mean and variance of deep features at the instance level. The proposed method provides an end-to-end mapping technique between the high and low-resolution images respectively. New images are then created, in which the resolution is four times higher than the resolution of the original images. Our model has been evaluated with the dataset "DeepScores" and shows that it outperforms other existing methods.

Ranking Tag Pairs for Music Recommendation Using Acoustic Similarity

  • Lee, Jaesung;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.159-165
    • /
    • 2015
  • The need for the recognition of music emotion has become apparent in many music information retrieval applications. In addition to the large pool of techniques that have already been developed in machine learning and data mining, various emerging applications have led to a wealth of newly proposed techniques. In the music information retrieval community, many studies and applications have concentrated on tag-based music recommendation. The limitation of music emotion tags is the ambiguity caused by a single music tag covering too many subcategories. To overcome this, multiple tags can be used simultaneously to specify music clips more precisely. In this paper, we propose a novel technique to rank the proper tag combinations based on the acoustic similarity of music clips.

Multiple Regression-Based Music Emotion Classification Technique (다중 회귀 기반의 음악 감성 분류 기법)

  • Lee, Dong-Hyun;Park, Jung-Wook;Seo, Yeong-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.6
    • /
    • pp.239-248
    • /
    • 2018
  • Many new technologies are studied with the arrival of the 4th industrial revolution. In particular, emotional intelligence is one of the popular issues. Researchers are focused on emotional analysis studies for music services, based on artificial intelligence and pattern recognition. However, they do not consider how we recommend proper music according to the specific emotion of the user. This is the practical issue for music-related IoT applications. Thus, in this paper, we propose an probability-based music emotion classification technique that makes it possible to classify music with high precision based on the range of emotion, when developing music related services. For user emotion recognition, one of the popular emotional model, Russell model, is referenced. For the features of music, the average amplitude, peak-average, the number of wavelength, average wavelength, and beats per minute were extracted. Multiple regressions were derived using regression analysis based on the collected data, and probability-based emotion classification was carried out. In our 2 different experiments, the emotion matching rate shows 70.94% and 86.21% by the proposed technique, and 66.83% and 76.85% by the survey participants. From the experiment, the proposed technique generates improved results for music classification.

A Study on the Necessity for the Music Composition in TV Documentaries - Focusing on In-depth Interviews with Music Directors at KBS.

  • Kim, Hyung-Jin
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.74-85
    • /
    • 2020
  • In this study, we investigated the necessity and limitations of music composition required in TV documentary by conducting in-depth interviews with 20 music directors currently working at Korean Broadcasting System (KBS). Our research has shown that composition of music is necessary. However, in reality, it is difficult to use the composed music due to problems such as time and cost of composing and trust in the music composer; so music libraries, film music, or other music are used instead of the composed music in many situations. However, at the time when companies like its rival Netflix are aware of the importance of sound, the impact of Netflix could lead to a decline in the quality of terrestrial TV, which could lead to a weakening of competitiveness. Recently, in the case of sound programs, the sales of secondary works are active due to "internet uploading using YouTube" or "exporting programs", but the sales have been hindered by restrictions on the use of copyrighted works. The music source of library is said to be the one whose copyright problem has been resolved. In this study, we show that the composed music is an ultimate alternative to TV documentaries, since the library music is sometimes suspended due to the situations of management companies.

Automatic Music Summarization Using Vector Quantization and Segment Similarity

  • Kim, Sang-Ho;Kim, Sung-Tak;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2E
    • /
    • pp.51-56
    • /
    • 2008
  • In this paper, we propose an effective method for music summarization which automatically extracts a representative part of the music by using signal processing technology. Proposed method uses a vector quantization technique to extract several segments which can be regarded as the most important contents in the music. In general, there is a repetitive pattern in music, and human usually recognizes the most important or catchy tune from the repetitive pattern. Thus the repetition which is extracted using segment similarity is considered to express a music summary. The segments extracted are again combined to generate a complete music summary. Experiments show the proposed method captures the main theme of the music more effectively than conventional methods. The experimental results also show that the proposed method could be used for real-time application since the processing time in generating music summary is much faster than other methods.

Performance Comparison of 2D MUSIC and Root-MUSIC Algorithms for Anti-jamming in GPS Receiver (GPS 재밍 대응을 위한 2차원 MUSIC과 Root-MUSIC 알고리즘의 성능 비교)

  • Jin, Mi-Hyun;Lee, Ju-Hyun;Choi, Heon-Ho;Lee, Sang-Jeong;Shin, Young-Cheol;Lee, Byung-Hwan;Ahn, Woo-Gwun;Park, Chan-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2131-2138
    • /
    • 2011
  • GPS is vulnerable to jamming because of extremely low signal power. Many anti-jamming techniques are studied for complement this vulnerability. Anti-jamming techniques using array antenna are most effective technique and these techniques are required the DOA estimates. MUSIC algorithm and Root-MUSIC Algorithm are typical algorithms used in DOA estimation. Two algorithms have different characteristics, so the choice of an algorithm may depends on many factors such as the environment and the system requirements. The analysis and performance comparison of both algorithms is necessary to choose the best method to apply. This paper summarizes the theory of MUSIC and Root-MUSIC algorithms. And this paper extends both algorithm to estimate two-dimensional angles. The software simulator of both algorithms are implemented to evaluate the performance. Root-MUSIC algorithm has the computational advantage on ULA. MUSIC algorithm is applicable to any antenna array. MUSIC shows better estimation performance when number of array element is small while the computational load of MUSIC is much higher than Root-MUSIC.

Study on the Amplitude Modification Audio Watermarking Technique for Mixed Music with High Inaudibility (높은 비가청성을 갖는 믹스 음악의 크기 변조 오디오 워터마킹 기술에 관한 연구)

  • Kang, Se-Koo;Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • In this paper, we propose a watermarking technology for a mixed music. The mixed music means recreated music that contained a number of musics in one audio clip. Royalty associated with the audio content is typically imposed by the full audio content. However, the calculation of royalties gives rise to conflict between copyright holders and users in the mixed music because it uses not full audio content but a fraction of that. To solve the conflict related with the mixed music, we propose a audio watermarking technique that inserts different watermarks for each audio in the audio that make up the mixed music. The proposed watermarking scheme might have poor SNR (signal to noise ratio) to embed to each audio clip. To overcome poor SNR problem, we used inaudible pseudo random sequence which modifies typical pseudo random sequence to canonical signed digit (CSD) form. The proposed method verifies the performance by each watermark extraction and the time internal estimation valies from the mixed music.

Analysis technique to support personalized music education based on learner and chord data (맞춤형 음악 교육을 지원하기 위한 학습자 및 코드 데이터 분석 기법)

  • Jung, Woosung;Lee, Eunjoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.51-60
    • /
    • 2021
  • Due to the growth of digital media technology, there is increasing demand of personalized education based on context data of learners throughout overall education area. For music education, several studies have been conducted for providing appropriate educational contents to learners by considering some factors such as the proficiency, the amount of practice, and their capability. In this paper, a technique has been defined to recommend the appropriate music scores to learners by extracting and analyzing the practice data and chord data. Concretely, several meaningful relationships among chords patterns and learners were analyzed and visualized by constructing the learners' profiles of proficiency, extracting the chord sequences from music scores. In addition, we showed the potential for use in personalized education by analyzing music similarity, learner's proficiency similarity, learner's proficiency of music and chord, mastered chords and chords sequence patterns. After that, the chord practice programs can be effectively generated considering various music scores using the synthetically summarized chord sequence graphs for the music scores that the learners selected.

Recognition of Music using Backpropagation Network (Backpropagation Network을 이용한 악보 인식)

  • Park, Hyun-Jun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.258-261
    • /
    • 2007
  • This paper presents techniques to recognize music using back propagation network, one of the neural network algorithms, and to preprocess technique for music image. Music symbols and music notes are segmented by preprocessing such as binarization, slope correction, staff line removing, etc. Segmented music symbols and music notes are recognized by music note recognizing network and non-music note recognizing network. We proved correctness of proposed music recognition algorithm through experiments and analysis with various kind of musics.

  • PDF