• Title/Summary/Keyword: MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide)

Search Result 3, Processing Time 0.019 seconds

THE CYTOTOXICITY ON L929 CELLS AND ANTIMICROBIAL EFFECT ON SEVERAL STREPTOCOCCI OF CALCIUM HYDROXIDE (수산화칼슘의 L929 세포독성 및 연쇄구균에 대한 항균효과에 관한 연구)

  • Yu, Young-Dae;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.538-548
    • /
    • 1995
  • Calcium hydroxide has been used not only as pulp capping and pulpotomy agents in the operative dentistry, but dressing and temporary filling materials in root canal treatment. Calcium hydroxide was known to stimulate odontoblast to produce new reparative dentin and to eliminate microorganims effectively in the infected root canals. The purpose of this study was to evaluate the effect of calcium hydroxide solution on cultured L929 cells and its antibacterial effect on several streptococci. Calcium hydroxide solution (0.121g/100ml) was added to L929 cells and cell viability was measured using 3-(4,5-dimethylthiazol-2-yl) -2,5-dimethyltetrazolium bromide (MTT) and neutral red (NR) dye. Calcium hydroxide solution (20, 40, 60, 80, 100 and $150{\mu}l$) was added to L929 cells in 96-well microplates for 1, 4 and 24 hours respectively. Cell viability was gradually decreased when the volume and exposure time of calcium hydroxide solution were increased. When $150{\mu}l$ of calcium hydroxide was applied to L929 cells for 24 hours, there was more than fifty percent reduction of cell viability. Calcium hydroxide solution (20g/100ml) showed antibacterial effect against S. uberis, S. intermedius and S. mitis after thirty-second exposure. But 0.121g/100ml concentration of cacium hydroxide solution exhibited no antibacterial effect on six streptococci after one-hour exposure.

  • PDF

CYTOTOXICITY OF RETROGRADE FILLING MATERIALS TESTED BY 51Cr RELEASE, MIT AND LD ACTIVITY (51Cr방출과 MTT 및 LD활성도를 이용한 역충전재의 세포독성에 관한 연구)

  • Choi, La-Young;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.409-428
    • /
    • 1994
  • Endodontic surgery is performed when conventional endodontic therapy fails or is contraindicated. In such cases, retrograde filling materials including amalgam, composite resin, and various cements have been used. Biocompatibilty and margin sealing ability of retrograde filling materials are important for the long term success of endodontic surgery. In vitro cell culture is frequently used as the method of measuring the biocompatibilty of dental materials. The purpose of this study was to evaluate the cytotoxicity of six kinds of retrograde filling materials including newly developed light curing glass ionomer cements. Each material was mixed according to. the manufacture's instruction and evaluated as : freshly mixed, 24-hour after mixing, and 168-hour after mixing respectively. The elution solution was extracted after 24-hour contact with materials using media. Cytotoxicity was evaluated by direct contact, or elution contact. Test results of radiochromium($^{51}Cr$) release, cell viability using tetrazolium dye (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl dimethyltetrazolium bromide(MTT) test and lactate dehydrogenase(LD) of damaged L929 cells were analyzed. In the $^{51}Cr$ release of direct contact, all experimental retrograde filling materials except amalgam and glass ionomer cement showed increased cytotoxicity compared to control. In the $^{51}Cr$ release of elution solution, the released $^{51}Cr$ was so minimal that it was impossible. to evlauate the cytotoxicity exactly. The elution solutions of glass ionomer cement and IRM showed marked cytotoxicity in MTT test. LD enzyme activity was highest in tests of direct contact with composite, light curing composite, and light curing glass ionomer cement and IRM. Amalgam revealed least cytotoxicity while IRM showed cytotoxicity using all three methods. Composite, light curing composite and light curing glass iomomer cement were cytotoxic in the tests of $^{51}Cr$ release and LD activity. Glass ionomer cement showed cytotoxic effect only in the MTT method. From these results it is suggested that the standardization and optimization of cytotoxicity testing, especially using elution solutions, should be strongly advised.

  • PDF

Effects of taxol and ionizing radiation on cytotoxicity and prostaglandin production in KB, RPMI-2650, SW-13 and L929 (수종과 암세포주와 섬유모세포주에서 taxol과 전리방사선이 세포독성과 prostaglandin생성에 미치는 영향)

  • Lee Keon-Il;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.1
    • /
    • pp.127-143
    • /
    • 1998
  • The author evaluated the effects of taxol, a microtubular inhibitor, as a possible radiation sensitizer and the production of prostaglandins on three human cancer cell lines(KB, RPMI-2650 and SW-13) and one murine cell line(L929). Each cell line was divided into four groups (control, taxol only, radiation only and combination of taxol and radiation). The treatment consisted of a single irradiation of 10Gy and graded doses (5, 50, 100, 200, 300, 500 nM) of taxol for a 24-h period. The cytotoxicity of taxol alone was measured at 1 day after(1-day group) and 4 days after(4-day group) the treatment. The survival ratio of cell was analyzed by MTT (3-(4,5-dimethylthiazol-2-yl) -2,5-dimethyl tetrazolium bromide) test. Prostaglandins(PGE2 and PGI2) were measured in the culture medium by a radioimmunoassay. The results obtained were as follows. 1. There was a significantly increased cytotoxicity of KB cells in 4-day group than those in I-day group. There was a high correlation between doses of taxol and cell viability in both groups(l-day group R=0.82741, 4-day group R=0.84655). 2. There was a significantly increased cytotoxicity of RPMI -2650 cells treated with high concentration of taxol in 4-day group than those in I-day group. Also there was a high correlation between doses of taxol and cell viability in 4-day group(R=0.93917). 3. There was a significantly increased cytotoxicity of SW-13 cells treated with high concentration of taxol in 4-day group than those in 1-day group. However no high correlation was observed between doses of taxol and cell viability in both groups(1-day group R=0.46362, 4-day group R=0.65425). 4. There was a significantly increased cytotoxicity of L929 cells treated with low concentration of taxol in 4-day group than those in 1-day group. At the same time, there was a low correlation between doses of taxol and cell viability in both groups(1-day group R=0.34237, 4-day group R=0.23381). 5. In I-day group of L929 cells, higher cytotoxicities were observed in the groups treated with 500 nM taxol than given 10 Gy radiation alone. L929 cells in I-day group alone showed a radiosensitizing effect by taxol.. 6. In addition to L929 cells, all cancer cells treated with a combination of taxol and radiation in 4-day group appeared to have some fragmented nuclei and to float on the medium. In addition, L929 cells appeared to be more confluent. 7. The level of PGE2 production was the highest in the contol KB cells. This appeared to increase in every experimental group of all three cancer cells except L929 cells. There was a significantly increased production of PGE2 in SW -13 cells treated with a combination taxol and radiation compared to the other experimental groups. 8. The level of PGE2 production in the control group of RPMI-Z650 cells was the highest. This appeared to increase in every experimental group of all cells except in SW-13 cells. This also increased significantly in RPMI-2650 cells treated with a combination of taxol and radiation compared to the other experimental groups.

  • PDF