• Title/Summary/Keyword: MTPA control

Search Result 69, Processing Time 0.022 seconds

A Study on Boost/Flux-Weakening Controller for Wide Speed Operation Range having Engine and IPMSG for Special Equipment Vehicle (특수차량용 엔진 직결형 IPMSG의 넓은 속도운전 범위를 위한 부스트/약자속 제어기에 관한 연구)

  • Lee, Sang-Geon;Kim, Sung-An;Cho, Yun-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.54-61
    • /
    • 2014
  • This paper proposes a boost/flux-weakening controller (BFWC) for wide speed operation range having engine and interior permanent magnet synchronous generator (IPMSG) for special equipment vehicle. The proposed BFWC exploits direct torque/flux control (DTFC) scheme based on space vector modulation method to control the constant DC voltage output within the entire speed operation range of engine. And, to improve the response characteristics of maximum torque per ampere (MTPA) operation and flux-weakening operation, the MTPA and flux-weakening feed-forward controllers are applied. To estimate feasibility and usefulness of the proposed controller, the simulation and experimental results are compared.

Numerical Investigation on Permanent-Magnet Eddy Current Loss and Harmonic Iron Loss for PM Skewed IPMSM

  • Lim, Jin-Woo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • This paper presents the characteristics of PM eddy current loss and harmonic iron loss for PM step-skewed Interior Permanent Magnet Synchronous Motor (IPMSM) with concentrated windings and multi-layered PM under the running condition of maximum torque per ampere (MTPA) and flux-weakening control. In particular, PM eddy current loss and harmonic iron loss in IPMSM have been numerically computed with three-dimensional Finite Element Analysis (3D FEA), whereby IPMSM with concentrated windings and multi-layered PM has been designed to identify the optimized skew angle contributing to the reduced PM eddy current loss and torque ripples, while maintaining the required average torque. Furthermore, numerical investigation on PM eddy current loss and iron loss at MTPA and flux-weakening control has been carried-out in terms of PM step-skew.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Jung, Seung-Hwan;Choy, Ick;Cho, Whang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of Interior Permanent Magnet Synchronous Motor (IPMSM). First, in order to improve the performance of speed tracking, a nonlinear back-stepping controller is designed. In addition, since it is difficult to achieve the high quality control performance without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. Finally, for the efficiency of power consumption of the motor, controller is designed to operate motor with the minimum current for the required maximum torque. The proposed controller is tested through experiment with a 1-hp Interior Permanent Magnet Synchronous Motor (IPMSM) for the angular velocity reference tracking performance and load torque volatility estimation, and to test the Maximum Torque per Ampere (MTPA) operation. The result verifies the efficacy of the proposed controller.

The Control Method of In-Wheel PMSM for Electric Scooter using Speed Observer (속도 관측기를 이용한 전기스쿠터용 IN-WHEEL 영구자석 동기 전동기의 제어 방법)

  • Son, Tae-Sik;Lee, Yong-Kyun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This paper presents the torque control algorithm of a permanent magnet synchronous motor(PMSM) for an electric scooter. The volume of the in-wheel type motor is restricted due to the complicated mechanical structure in wheel of an electric scooter, so the hall sensors instead of resolver and encoder for the rotor position sensors are installed. In this paper, the rotor speed and position are estimated from the speed estimator for vector control of a PMSM with hall sensors. The motor starts to rotate at standstill in BLDC mode with 120 degree conduction. After start up, the operating mode is changed to the vector control with maximum torque per ampere(MTPA) operation at low speeds and flux weakening control at high speeds. The performance of the proposed control algorithm is verified through the experiment in the electric scooter.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM 전동기의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.855-864
    • /
    • 2011
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of IPMSM(Interior Permanent Magnet Synchronous Motor). First, in order to improve the performance of speed tracking a nonlinear back-stepping controller is designed. Since it is difficult to control the high performance driving without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. In addition, for the efficiency of power consumption of the motor, controller is designed to operate motor with minimum current for maximum torque. The proposed controller is applied through simulation to the a 2-hp IPMSM for the angular velocity reference tracking performance and load torque volatility estimation, and to test the MTPA(Maximum Torque per Ampere) operation in constant torque operation region. The result verifies the efficacy of the proposed controller.

Torque error compensation of SPMSM drives with a stator flux linkage observer at low speed (쇄교자속관측기를 이용한 저속 영역에서의 표면부착형 영구자석 동기전동기의 토크 오차 보상기법)

  • Choi, Sung-min;Park, Chang-Seok;Lee, Jae-Suk
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1031-1035
    • /
    • 2018
  • A compensation algorithm targeting for torque development from a SPMSM including a low speed operation is presented in this paper. As known, PM flux linkage in SPMSM is varied by temperature. Maximum Torque per Ampere (MTPA) uses the calculated PM flux linkage, and torque error occurs due to change of PM flux linkage. In the manuscript, estimated PM flux linkage is obtained using a stator flux observer. The torque error is corrected using the estimated PM flux linkage. The proposed algorithm is implemented and verified in simulation and experiment.

MTPA Control of Induction Motor Drive using Fuzzy-Neural Networks Controller

  • Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1474-1477
    • /
    • 2005
  • This paper is proposed maximum torque per ampere of induction motor using fuzzy-neural networks controller. Operation of maximum torque per ampere is achieved when, at a given torque and speed, the slip frequency is adjusted to that so that the stator current amplitude is minimized. This paper introduces a induction motor drive system with fuzzy-neural networks controller. A neural network-based architecture is described for fuzzy logic control. The characteristic rule and their membership function of fuzzy system are represented as the processing nodes in the neural network structure. This paper is proposed the analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

Field Weakening Control of IPMSM Based Next Generation High Speed Railway System (IPMSM이 적용된 차세대 고속전철 시스템의 약계자 제어)

  • Jin, Kang-Hwan;Yi, Du-Hee;Kim, Sung-Je;Chang, Chin-Young;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.351-357
    • /
    • 2010
  • In this paper, a vector control of the IPMSM drives for the next generation domestic high speed railway system is presented. The applied control method uses one pulse mode field weakening control in constant power region, and maximum torque control per ampere control in constant torque region considering current and voltage limits. An overmodulation control interval is inserted to improve the transient characteristics during transition period of the control modes. Simulation programs based on Matlab/Simulink are developed. Finally the designed system is verified by simulation and their characteristics are analyzed by the simulation results.

Loss Minimization Control of Interior Permanent Magnet Synchronous Motors Considering Self-Saturation and Cross-Saturation

  • Pairo, Hamidreza;Khanzade, Mohammad;Shoulaie, Abbas
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1099-1110
    • /
    • 2018
  • In this paper, a loss minimization control method for interior permanent magnet synchronous motors is presented with considering self-saturation and cross saturation. According to variation of the d-axis and q-axis inductances by different values of the d-axis and q-axis components of currents, it is necessary to consider self-saturation and cross saturation in the loss minimization control method. In addition, the iron loss resistance variation due to frequency variation is considered in the condition of loss minimization. Furthermore, the loss minimization control method is compared with maximum torque per ampere (MTPA), unity power factor (UPF) and $i_d=0$ control methods. Experimental results verify the performance and proper dynamic response of the loss minimization control method with considering self-saturation and cross saturation.

Vector Control for Three Phase Permanent Magnet Synchronous Motor Drive System (3상 영구자석형 동기전동기의 구동을 위한 벡터 제어)

  • Moon, Jaeeun;Lee, Taehoon;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.193-194
    • /
    • 2017
  • This paper proposes a current control method in synchronous coordinate for vector control of PMSM (Permanent Magnet Synchronous Motor). In order to control the PMSM by MTPA(Maximum Torque per Ampere), it is necessary to generate the rotating magnetic field to be $90^{\circ}$ with the magnetic field of the rotor, and the current control is necessary. To apply the current control to PMSM, the phase of the current command is also changed in accordance with the change of the position of the motor rotor. In this paper, the control of PMSM is performed through simulation using DC current command in synchronous coordinate system.

  • PDF