• Title/Summary/Keyword: MT-hGH gene

Search Result 4, Processing Time 0.019 seconds

Effect of Pronuclear Injection with Human Growth Hormone Gene on Development and PCR-Screening in Rabbit Embryos (사람성장호르몬 유전자의 전핵내 미세주입이 토끼 수정란의 체외발달에 미치는 영향과 PCR검색)

  • Kang, T. Y.;Chae, Y. J.;Lee, H.;Lee, K. K.;Park, C. S.;Lee, H. J.
    • Journal of Embryo Transfer
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 1998
  • The pronuclear injection of metallothionein-human growth hormone (MT-hGH) gene into rabbit zygotes was performed to establish in vitro developmental system and to detect the presence of the injected gene by nested PCR. Mature female New Zealand White rabbits were superovulated by eGG and hCG treatments. The rabbits were mated and the zygotes were collected from the oviducts 18-22 h after hCG injection by flushing with D-PBS. Two to three picoliters of MT-hGH gene was microinjected into male pronuclei. The foreign gene-injected zygotes were cultured in TCM-199 or RD mediurn containing 10% FCS with a monolayer of rabbit oviductal epithelial cefls in a 5% $CO_2$ incubator. The presence of injected DNA in rabbit embryos or blastomeres at different developmental stages .vas detected by a nested PCR analysis. The results are summarized as follows ; 1.The developmental rate of the MT-hGH gene-injected zygotes to blastocyst was significantly higher in TCM-199 medium (68.1%) than in RD medium (42.9%). 2.The gene injection into pronuclei at 18 or 22 hours post hCG treatment during pronuclear stage did not much affect on the in vitro development of the rabbit embryos. 3.The rate of gene-positive embryos detected by the nested PCR analysis was significantly decreased when they developed to blastocysts. The results indicate that the screening of transgene in rabbit embryos by nested PCR analysis could be a prornisible method for the preselection of transgenic embryos. Furthermore, the preselection of transgenic embryos would greatly reduce hoth the cost and effort of production of transgenic animals.

  • PDF

Cloning of MT -hGH Gene-injected Rabbit Embryos by Nuclear Transplantation (사람성장호르몬 유전자주입 토끼수정란의 핵이식에 의한 복제)

  • Kang, T.Y.;Chae, Y.J.;Lee, H.;Park, C.S.;Lee, H.J.
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.4
    • /
    • pp.419-424
    • /
    • 1998
  • The present study was carried out to examine the efficiency of cloning of transgenic embryos by nuclear transfer(NT) using gene-injected rabbit embryos. The rabbit embryos at pronuclear stage were microinjected with methallothionein-human growth hormone(MT-hGH) gene and cultured to 8- and 16-cell in TCM-199 containing 10% FCS with a monolayer of rabbit oviductal epithelial cells in a 5% $CO_2$incubator. The recipient oocytes were collected from the oviducts 14~16 h after hCG injection. The oocytes were enucleated and activated with 5$\mu$M ionomycin and 2mM 6-dimethylaminopurine. Blastomeres form gene-injected embryos were transferred into the enucleated oocytes by micromanipulation. The nuclear transplant oocytes were electrofused and co-cultured with rabbit oviductal cells. Following 120 h of culture, blastocysts were prepared for gene analysis by polymerase chain reaction(PCR). In previous experiment, the rate of gene-positive embryos detected by the nested PCR analysis was significantly decreased while developing to blastocyst(25%)(Kang et al., 1998). The fusion rate of gene-injected blastomeres was significantly(P<0.05) lower than non-injected blastomeres(66% vs 80%). However, the NT embryos that were derived from gene-injected donor embryos did not differ from control embryos in development to the blastocyst stage(39% vs 31%). Of the 43 NT blastocysts developed from the gene-injected donor embryos, twelve(28%) were positive for the injected DNA. The results indicate that NT with gene-injected embryos can be successfully used for cloning and multiplication of transgenic embryos, furthermore applicable to improvement of transgenic animal production.

  • PDF

Factors Affecting the Efficiency of Introducing Growth Hormone Gene into Mud Loach : Gene Transfer via Electroporation (미꾸라지에 성장호르몬 유전자 이식을 위한 최적 조건 개발)

  • Kim Dong Soo;Nam Yoon Kwon
    • Journal of Aquaculture
    • /
    • v.8 no.3
    • /
    • pp.241-249
    • /
    • 1995
  • Sperm from mud loach (Misgurnus mizolepis) were electroporated in the presence of plasmid DNA, pRSV/luc or pMT/hGH over a range of field strength of 0-1,625 V/cm with capacitance from 0 to 1,000 ${\mu}F$, and the effects of electroporation on fertilization, hatching, early survival, and efficiency of gene transfer were investigated. Average fertilization rate, hatching rate and early survival rate up to yolk sac absorption of all experimental groups were not significuntly different (P>0.05). The proportion of fish carrying pRSV/luc based on the polymerase chain reaction (PCR) analysis was ranged from 0 to $20\%$, however, the values of gene transfer efficiency from the different eledctroporation conditions were not significantly different. PCR analysis of pMT/hGH transferred groups revealed that screening of pMT/hGH transferred fish by PCR was difficult because of significant nonspecific amplifications resulted from the homologous sequences in the genome of mud loach.

  • PDF

The Efficacy of Enhanced Growth by Ectopic Expression of Ghrelin and Its Variants Using Injectable Myogenic Vectors

  • Xie, Q.F.;Wu, C.X.;Meng, Q.Y.;Li, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.146-152
    • /
    • 2004
  • Ghrelin is an acylated peptide recently identified as the endogenous ligand for the growth hormone (GH) secretagogues receptor 1a (GHS-R1a) and is involved in a novel system for regulating GH release. To understand the long-term effects of ghrelin, here we constructed six myogenic expression vectors containing the cDNA of swine mature ghrelin (pGEM-wt-sGhln, pGEM-wt-hGhln), ghrelin mutant of $Ser^3$ with $Trp^3$ (pGEM-mt-sGhln, pGEM-mt-hGhln) and truncated ghrelin derivative (pGEM-tmtsGhln, pGEM-tmt-hGhln) encompassing the first 7 residues of ghrelin (including $Ser^3$ substituted with $Trp^3$) and adding a basic amino acid, Lys (K) in the C-terminus. The constructs, pGEM-wt-sGhln, pGEM-mt-sGhln and pGEM-tmt-sGhln were linked with the ghrelin leader sequence, while the pGEM-wt-hGhln, pGEM-mt-hGhln and pGEM-tmt-hGhln were linked with a leader sequence from the human growth hormone releasing hormone (hGHRH). Intramuscular injection of 200 ${\mu}g$ pGEM-wt-sGhln or pGEM-tmt-sGhln augmented growth over 3 weeks in normal rats and peaked at day 21 or 14 post-injection respectively, whose body weight gains were on average approximately 6% or 19% heavier over controls. However, other injectable vectors had no such enhanced growth effects. Our results suggested that the efficacy of the ghrelin leader sequence was more effective than that of hGHRH in our system. Moreover, the results indicated that skeletal muscle might have the ability to posttranslationally modify the in vivo expressed ghrelin. And the most strikingly, the short ghrelin analog seems to mimic the biological effects more efficiently when compared with the full-length ghrelin.