• 제목/요약/키워드: MSE(Mean Squared Error)

검색결과 177건 처리시간 0.019초

Estimation of the Mean and Variance for Normal Distributions whose Both Sides are Truncated

  • Hong, Chong-Sun;Choi, Yun-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.249-259
    • /
    • 2002
  • In order to estimate the mean and variance for a Normal distribution which is truncated at both right and left sides, maximum likelihood estimators based on the entire sample from the original distribution are compared with the sample mean and variance of the censored sample which is the data remaining after truncation using simulation. We found that, surprisingly, the mean squared error of the mean based on the censored data Is smaller than that of the full sample estimators.

JPEG-2000 Gradient-Based Coding: An Application To Object Detection

  • Lee, Dae Yeol;Pinto, Guilherme O.;Hemami, Sheila S.
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 추계학술대회
    • /
    • pp.165-168
    • /
    • 2013
  • Image distortions, such as quantization errors, can have a severe negative impact on the performance of computer vision algorithms, and, more specifically, on object detection algorithms. State-of-the-art implementations of the JPEG-2000 image coder commonly allocate the available bits to minimize the Mean-Squared-Error (MSE) distortion between the original image and the resulting compressed image. However, considering that some state-of-the-art object detection methods use the gradient information as the main image feature, an improved object detection performance is expected for JPEG-2000 image coders that allocate the available bits to minimize the distortions on the gradient content. Accordingly, in this work, the Gradient Mean-Squared-Error (GMSE) based JPEG-2000 coder presents an improved object detection performance over the MSE based JPEG-2000 image coder when the object of interest is located at the same spatial location of the image regions with the strongest gradients and also for high bit-rates. For low bit-rates (e.g. 0.07bpp), the GMSE based JPEG-2000 image coder becomes overly selective in choosing the gradients to preserve, and, as a result, there is a greater chance of mismatch between the spatial locations of the gradients that the coder is trying to preserve and the spatial locations of the objects of interest.

  • PDF

Pyramid VQ를 이용한 AMR-WB+ 코덱 내 TCX 모듈의 성능 개선 (Improvement of the TCX Module in AMR-WB+ Codec Using Pyramid VQ)

  • 박상국;박정은;백승권;서정일;강상원
    • 한국음향학회지
    • /
    • 제26권3호
    • /
    • pp.109-114
    • /
    • 2007
  • 본 논문은 AMR-WB+ 코덱의 오디오 품질을 개선하기 위하여 TCX모듈 변환계수 양자화기에 8차 및 16차 Pyramid VQ방식을 제안하였다. 제안된 Pyramid VQ 방식은 AMR-WB+ 코덱에 적용된 $RE_8$ Lattice VQ 방식과 비교 평가되었으며, 8차 및 16차 Pyramid VQ 방식의 사용시 Mean Squared Error (MSE)는 각각 4% 및 5.7% 개선되었고, Perceptual Evaluation of Audio Quality(PEAQ) 값은 각각 3.3% 및 4.7% 개선되었다.

영오차 확률 기반 알고리즘의 입력 정력 정규화 (Input Power Normalization of Zero-Error Probability based Algorithms)

  • 김종일;김남용
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2017
  • 충격성 잡음 환경에서 최대 영확률 (MZEP) 알고리듬은 최소자승오차 (MSE) 기반의 알고리듬 보다 우수한 성능을 지닌다. 그리고 알고리듬 자체에 내재한 크기 조절 입력 (MCI)가 MZEP 알고리듬을 충격성 잡음으로부터 알고리듬을 안정되게 유지하는 역할을 하는 것으로 알려져 있다. 이 논문에서는 MCI 입력의 평균전력으로 MZEP 알고리듬의 스텝 사이즈를 정규화하는 방식을 제안하였다. 충격파 발생률이 0.03인 충격성 잡음하의 시뮬레이션에서 정상상태 MSE 성능 비교에서 기존 MZEP에 비해 제안한 방식이 약 2dB 정도 향상된 특성을 보인다.

인공지능 기반 전력량예측 기법의 비교 (Comparison of Power Consumption Prediction Scheme Based on Artificial Intelligence)

  • 이동구;선영규;김수현;심이삭;황유민;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.161-167
    • /
    • 2019
  • 최근 안정적인 전력수급과 급증하는 전력수요를 예측하는 수요예측 기술에 대한 관심과 실시간 전력측정을 가능하게 하는 스마트 미터기의 보급의 증대로 인해 수요예측 기법에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 실제 측정된 가정의 전력 사용량 데이터를 학습하여 예측결과를 출력하는 딥 러닝 예측모델 실험을 진행한다. 그리고 본 연구에서는 데이터 전처리 기법으로써 이동평균법을 도입하였다. 실제로 측정된 데이터를 학습한 모델의 예측량과 실제 전력 측정량을 비교한다. 이 예측량을 통해서 전력공급 예비율을 낮춰 사용되지 않고 낭비되는 예비전력을 줄일 수 있는 가능성을 제시한다. 또한 본 논문에서는 같은 데이터, 같은 실험 파라미터를 토대로 세 종류의 기법: 다층퍼셉트론(Multi Layer Perceptron, MLP), 순환신경망(Recurrent Neural Network, RNN), Long Short Term Memory(LSTM)에 대해 실험을 진행하여 성능을 평가한다. 성능평가는 MSE(Mean Squared Error), MAE(Mean Absolute Error)의 기준으로 성능평가를 진행했다.

다양한 손실 함수를 이용한 음성 향상 성능 비교 평가 (Performance comparison evaluation of speech enhancement using various loss functions)

  • 황서림;변준;박영철
    • 한국음향학회지
    • /
    • 제40권2호
    • /
    • pp.176-182
    • /
    • 2021
  • 본 논문은 다양한 손실 함수에 따른 Deep Nerual Network(DNN) 기반 음성 향상 모델의 성능을 비교 평가한다. 베이스라인 모델로는 음성의 위상 정보를 고려할 수 있는 복소 네트워크를 사용하였다. 손실 함수는 두 가지 유형의 기본 손실 함수, Mean Squared Error(MSE)와 Scale-Invariant Source-to-Noise Ratio(SI-SNR)를 사용하였으며 두 가지 유형의 지각 기반 손실 함수 Perceptual Metric for Speech Quality Evaluation(PMSQE)과 Log Mel Spectra(LMS)를 사용한다. 성능은 각 손실 함수의 다양한 조합을 사용하여 얻은 출력을 객관적인 평가와 청취 테스트를 통해 측정하였다. 실험 결과, 지각기반 손실 함수를 MSE 또는 SI-SNR과 결합하였을 때 전반적으로 성능이 향상되며, 지각기반 손실함수를 사용하면 객관적 지표에서 약세를 보이는 경우라도 청취 테스트에서 우수한 성능을 보임을 확인하였다.

LSTM 오토인코더를 활용한 축산 환경 시계열 데이터의 이상치 탐지: 경계값 설정에 따른 성능 비교 (Anomaly Detection in Livestock Environmental Time Series Data Using LSTM Autoencoders: A Comparison of Performance Based on Threshold Settings)

  • 정세연;김상철
    • 스마트미디어저널
    • /
    • 제13권4호
    • /
    • pp.48-56
    • /
    • 2024
  • 축산업에서 환경의 이상치 탐지와 데이터 예측은 매우 중요한 과제이다. 대부분 시계열 데이터로 수집되는 축산 환경 데이터의 이상치는 급격한 생육환경의 변화와 예상치 못한 전염병의 징후를 나타낼 수 있으므로 이상치를 빠르게 탐지하는 것이 중요하다. 이상치의 빠른 탐지와 효과적인 대응은 가축의 스트레스를 최소화하고 전염병 발생 환경을 조기에 발견하여 농가의 경제적인 손실을 감소시키는 역할을 할 수 있다. 본 연구에서는 축산환경 데이터의 이상치 탐지 분야에서 이상치를 규정하는 경계값(Threshold) 설정에서 두 가지 설정 방법을 이용하여 실험하고 성능을 비교하였다. Mean Squared Error(MSE)를 활용한 이상치 탐지 방법과 Dynamic Threshold를 이용한 이상치 탐지 방법을 이용하여 이를 통해 주어진 이전 데이터의 평균값과의 변동성을 분석하여 이상 상황을 식별하는 연구를 진행하였다. MSE를 활용한 이상치 탐지 방법은 94.98% 정확도를 보였고 표준편차를 활용한 Dynamic Threshold 방법은 99.66%정확도로 성능이 더 우수함을 확인할 수 있었다.

지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상 (Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of ground water level)

  • 이원진;이의훈
    • 한국수자원학회논문집
    • /
    • 제55권11호
    • /
    • pp.903-911
    • /
    • 2022
  • 물을 공급하기 위한 자원 중 하나인 지하수는 다양한 자연적 요인에 의해 수위의 변동이 발생한다. 최근, 인공신경망을 이용하여 지하수위의 변동을 예측하는 연구가 진행되었다. 기존에는 인공신경망 연산자 중 학습에 영향을 미치는 Optimizer로 경사하강법(Gradient Descent, GD) 기반 Optimizer를 사용하였다. GD 기반 Optimizer는 초기 상관관계 의존성과 해의 비교 및 저장 구조 부재의 단점이 존재한다. 본 연구는 GD 기반 Optimizer의 단점을 개선하기 위해 GD와 화음탐색법(Harmony Search, HS)를 결합한 새로운 Optimizer인 Gradient Descent combined with Harmony Search(GDHS)를 개발하였다. GDHS의 성능을 평가하기 위해 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용하여 이천율현 관측소의 지하수위를 학습 및 예측하였다. GD 및 GDHS를 사용한 MLP의 성능을 비교하기 위해 Mean Squared Error(MSE) 및 Mean Absolute Error(MAE)를 사용하였다. 학습결과를 비교하면, GDHS는 GD보다 MSE의 최대값, 최소값, 평균값 및 표준편차가 작았다. 예측결과를 비교하면, GDHS는 GD보다 모든 평가지표에서 오차가 작은 것으로 평가되었다.

A Study on the Complex-Channel Blind Equalization Using ITL Algorithms

  • 김남용
    • 한국통신학회논문지
    • /
    • 제35권8A호
    • /
    • pp.760-767
    • /
    • 2010
  • For complex channel blind equalization, this study presents the performance and characteristics of two complex blind information theoretic learning algorithms (ITL) which are based on minimization of Euclidian distance (ED) between probability density functions compared to constant modulus algorithm which is based on mean squared error (MSE) criterion. The complex-valued ED algorithm employing constant modulus error and the complex-valued ED algorithm using a self-generated symbol set are analyzed to have the fact that the cost function of the latter forces the output signal to have correct symbol values and compensate amplitude and phase distortion simultaneously without any phase compensation process. Simulation results through MSE convergence and constellation comparison for severely distorted complex channels show significantly enhanced performance of symbol-point concentration with no phase rotation.

Analysis of optimum grid determination of water quality model with 3-D hydrodynamic model using environmental fluid dynamics code (EFDC)

  • Yin, Zhenhao;Seo, Dongil
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.171-179
    • /
    • 2016
  • This study analyzes guidelines to select optimum number of grids to represent behavior of a given water system appropriately. The EFDC model was chosen as a 3-D hydrodynamic and water quality model and salt was chosen as a surrogate variable of pollutant. The model is applied to an artificial canal that receives salt water from coastal area and fresh water from a river from respective gate according to previously developed gate operation rule. Grids are subdivided in vertical and horizontal (longitudinal) directions, respectively until no significant changes are found in salinity concentrations. The optimum grid size was determined by comparing errors in average salt concentrations between a test grid systems against the most complicated grid system. MSE (mean squared error) and MAE (mean absolute error) are used to compare errors. The CFL (Courant-Friedrichs-Lewy) number was used to determine the optimum number of grid systems for the study site though it can be used when explicit numerical method is applied only. This study suggests errors seem acceptable when both MSE and MAE are less than unity approximately.