• Title/Summary/Keyword: MSC/NSTRAN

Search Result 2, Processing Time 0.018 seconds

Dynamic Characteristics of the Tilting Turret System for Multi-Purpose Lathe (다기능 복합가공기의 틸팅터릿 시스템의 진동특성 해석)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.215-219
    • /
    • 2000
  • In multi-purpose lathe, the design of tilting turret slide system has on important and critical role enhance accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, 3-axis sliding system with tilting turret is modeled by considering the element dividing, material proprties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of each structures such as saddle, careg, and turret are simulated by MSC/MASTRAN, for the purpose of developing the effective design.

  • PDF

Structural Design and Analysis upon Active Rotor Blade with Trailing-edge Flap (뒷전 플랩을 장착한 지능형 로터 블레이드의 구조 설계 및 해석)

  • Eun, Won-Jong;Natarajan, Balakumaran;Lee, Jae-Hwan;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • Vibratory loads imposed by the rotating blade upon the fuselage has been one of major obstacles in rotorcrafts. A new concept of rotor blade is currently developed to adopt an Active Trailing-edge Flap (ATF) to alleviate such obstacles. The flap is mounted at 65~85% spanwise location from the rotor hub. The nominal rotational speed of the blade is as high as 1,528 RPM, to match the required tip Mach number. Structural integrity is one of the important design aspects to be maintained and monitored in this special type of rotor. This is due to that many detailed components, which drive the flap, are inserted inside the rotating blade. To conduct its structural design and analysis, CAMRAD-II and the one-dimensional beam analysis are used. At the same time, three-dimensional finite element analysis are also used, such as MSC. PATRAN/NASTRAN, in order to analyze the details of the present active blade. As a result, comparable characteristics for the present rotor are predicted by both approaches.