• Title/Summary/Keyword: MRI technique

Search Result 402, Processing Time 0.026 seconds

Reduction of Metal Artifact by Using VAT-SEMAC in MRI (VAT-SEMAC을 이용한 보철물에 의한 허상 감소)

  • Kim, Hyung-Tae;Lim, Jong-Nam;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.227-232
    • /
    • 2019
  • MRI examination for patients with metal objects has in poor image quality. Metallic implants can result in poor image because magnetic susceptibility causes signal loss and distortion and makes poor imaging, which is called magnetic susceptibility artifact or metal artifact. There are several approaches to reduce metal artifacts. In this study, we study the reduction of metal artifact by VAT and SEMAC techniques. A metal implant used for orthopedic surgery was attached to the phatom and the distortion caused by the artifact was measured under T1WI and T2WI protocols. Several techniques of VAT only and VAT and SEMAC for the reduction of metal artifact were compared. The metal artifact showed a reduction of at least 8% to a maximum of 26% in the VAT-SEMAC. The VAT-SEMAC technique can be applied to patients with orthopedic implants to improve image quality. If scan time and image quality are simultaneously considered in VAT-SEMAC technique, metal artifact will be reduced in clinical practice.

Internal Quality Evaluation and Age Identification of Fresh Korean Ginseng using Magnetic Resonance Imaging (자기공명영상을 이용한 수삼의 내부 품질평가 및 연근판정)

  • 임종국;김철수;이승조;김성민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • The purpose of this study is to characterize the internal physical properties of fresh Korean ginsengs (Panax ginseng C.A. Meyer) through a magnetic resonance imaging (MRI) technique. Current external visual inspection cannot determine internal quality of ginsengs successfully. Relaxation time constants, T$_1$ and T$_2$*, were obtained from a series of MR images. Calculated Ti values were varied with different physiological states of ginseng tissues. Internal imaging information was obtained nondestructively from fresh ginsengs. One- and two-dimensional image analyses were performed. One-dimensional image analysis showed a potential of age identification of ginsengs rapidly. Internal quality of normal and abnormal ginsengs was evaluated using two-dimensional MR images. Various types of internal defects such as internal cavity and rotten spot were visualized clearly. The MRI technique had a feasibility to detect internal defects of fresh ginsengs effectively.

Analysis of SAR in a Human Head for a Cellular Phone (셀룰라 휴대폰에 의한 인체 두부의 SAR 해석)

  • 이애경;최형도;김진석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.776-787
    • /
    • 1998
  • This paper analyzes the local specific absorption rates (SAR's) averaged over 1 g and 10 g in a human head model in contact with a mobile phone operating at 835 MHz. The used numerical method is a total field finite-difference time-domain (FDTD) technique. The phone was simulated with a conducting box, a plastic case, and a whip antennal composed of a monopole and a helix. The discrete human model of the spatial resolution 3 mm is based on Magnetic Resonance Imaging (MRI), computerized tomography (CT) and anatomical images. The near field and far field and far field patterns were analyzed for extended and retracted phone. The two methods to take the volumes of the weights, 1 g or 10 g in tissue are proposed and compared to offer a reproductive technique for SAR estimations.

  • PDF

Temperature dependency of magnetic field drifts of HTS pancake coils for NMR/MRI applications

  • Choi, Kyeongdal;Lee, Seyeon;Kim, Woo-Seok;Lee, Sang Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.44-47
    • /
    • 2013
  • We had proposed a winding method so called "Wind-and-Flip", which enables a persistent current operation of an HTS pancake coil without any electrical joint. In order to improve the magnetic field drift characteristics, a prototype HTS coil with the technique was fabricated, and tested under various temperatures. Because the coil doesn't have any electric terminals for current leads, an HTS background magnet was used to induce the persistent current in the coil by field cooling process. A conduction cooling system with a GM cryocooler was prepared to keep the operating temperatures of the prototype coil much below the 77 K. We investigated the magnetic field drift characteristics under the various operating temperatures by measuring the center magnetic field with a cryogenic Hall sensor. The persistent current mode operation at 20 ~ 50K showed a strong possibility of the winding technique for the application such as MRI or NMR.

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

Simultaneous Unwrapping Phase and Error Recovery from Inhomogeneity (SUPER) for Quantitative Susceptibility Mapping of the Human Brain

  • Yang, Young-Joong;Yoon, Jong-Hyun;Baek, Hyun-Man;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.37-49
    • /
    • 2018
  • Purpose: The effect of global inhomogeneity on quantitative susceptibility mapping (QSM) was investigated. A technique referred to as Simultaneous Unwrapping Phase with Error Recovery from inhomogeneity (SUPER) is suggested as a preprocessing to QSM to remove global field inhomogeneity-induced phase by polynomial fitting. Materials and Methods: The effect of global inhomogeneity on QSM was investigated by numerical simulations. Three types of global inhomogeneity were added to the tissue susceptibility phase, and the root mean square error (RMSE) in the susceptibility map was evaluated. In-vivo QSM imaging with volunteers was carried out for 3.0T and 7.0T MRI systems to demonstrate the efficacy of the proposed method. Results: The SUPER technique removed harmonic and non-harmonic global phases. Previously only the harmonic phase was removed by the background phase removal method. The global phase contained a non-harmonic phase due to various experimental and physiological causes, which degraded a susceptibility map. The RMSE in the susceptibility map increased under the influence of global inhomogeneity; while the error was consistent, irrespective of the global inhomogeneity, if the inhomogeneity was corrected by the SUPER technique. In-vivo QSM imaging with volunteers at 3.0T and 7.0T MRI systems showed better definition in small vascular structures and reduced fluctuation and non-uniformity in the frontal lobes, where field inhomogeneity was more severe. Conclusion: Correcting global inhomogeneity using the SUPER technique is an effective way to obtain an accurate susceptibility map on QSM method. Since the susceptibility variations are small quantities in the brain tissue, correction of the inhomogeneity is an essential element for obtaining an accurate QSM.

Evaluation of Usefulness of IDEAL(Iterative decomposition of water and fat with echo asymmetry and least squares estimation) Technique in 3.0T Breast MRI (3.0T 자기공명영상을 이용한 유방 검사시 IDEAL기법의 유용성 평가)

  • Cho, Jae-Hwan
    • Journal of Digital Contents Society
    • /
    • v.11 no.2
    • /
    • pp.217-224
    • /
    • 2010
  • The purpose of this study was to examine the usefulness of IDEAL technique in breast MRI by performing a quantitative comparative analysis in patients diagnosed with DCIS. On a 3.0T MR scanner, fat-suppressed T2-weighted images and T1-weighted images before and after contrast enhancement were obtained from 20 patients histologically diagnosed with ductal carcinoma in situ (DCIS). The findings from the quantitative image analysis are the following: 1) On T2-weighted images, SNR were not significantly different in the lesion area itself between the CHESS and IDEAL groups, while the IDEAL group showed higher SNR at the ductal area and fat area than the CHESS group. In addition, the CNR were higher for the IDEAL group in those regions. 2) On T1-weighted images before enhancement, SNR were not significantly different in the lesion area itself between the CHESS and IDEAL groups, while the IDEAL group showed higher SNR at the ductal area and fat area than the CHESS group. In addition, the CNR were higher for the IDEAL group in those regions. 3) On T1-weighted images after enhancement, SNR were not significantly different in the lesion area itself between the CHESS and IDEAL groups, while the IDEAL group showed higher SNR at the ductal area and fat area than the CHESS group.

Quantitative Evaluation of Optimized Fat-Suppression Techniques for T1 Weighted Cervical Spine MR Imaging: Comparison of TSE-CHESS and TSE-SPAIR (T1 강조 경추자기공명영상에 대한 최적의 지방소거기법의 정량적 평가: TSE-CHESS 과 TSE-SPAIR 의 비교)

  • Goo, Eun-Hoe
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.529-536
    • /
    • 2013
  • The purpose of this study is to know clinical usefulness for fat suppression of the body curved portion compared with TSE-CHESS and TSE-SPAIR technique. A total of 25 normal volunteers without cervical spine disease were studied on a 3.0 T MRI scanner. As a quantitative analysis, PSNRs and CNRs were evaluated by using two methods for fat suppression of the body curved portion. As a results, PSNRs and CNRs for fat suppression were significantly greater for the TSE-SPAIR technique compared to TSE-CHESS technique. In conclusion, this study showed that a TSE-SPAIR technique has improved PSNRs and CNRs for evaluating of fat suppression in the body curved portion. These conclusions in the future will be provided information in diagnosis of fat suppression for the body curved portion.

Application of PET/CT Volume Rendering Technique to Improve Patient Satisfaction (환자의 만족도 향상을 위한 PET/CT Volume Rendering Technique 적용)

  • Jang, Dong-Gun;Lee, Sang-ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.877-881
    • /
    • 2021
  • Customer satisfaction is a very important factor in the Korean medical system. However, the field of medical imaging is very difficult for the general public to understand. Therefore, in this study, as a way to solve the communication problem between the medical staff and the patient, the PET/CT image was reconstructed using the Volume Rendering technique to increase patient satisfaction. VRT was performed on 360 cancer patients who had undergone PET/CT examination. As a result of a satisfaction survey on 100 patients, all 100 patients showed that the VRT image was superior to the existing image. PET/CT is not a device that observes detailed anatomical shapes, such as CT or MRI, but an image that shows a strong signal of cancer and can easily produce a VRT image. These VRT images can be expressed three-dimensionally so that the general public can easily understand them, so communication between medical staff and patients can be improved more efficiently, and it is expected that the patient's "right to know" will be satisfied.

A Study on the Qualty Evaluation of the Turbo Factor of the SPACE(Sampling Perfection with Application optimized Contrast using different flip-angle Evolutions) 3D T2 Technique during Olfactory Bulb MRI Examination (Olfactory bulb MRI 검사 시 SPACE 3D T2 기법의 Turbo factor 변화에 따른 화질 평가에 관한 연구)

  • Lee, Jun-Kyu;Roh, Tae-Kwan;Jo, Yong-Keun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2022
  • This study aims to find out the change in diagnostic capability and image quality compared to 2D TSE T2 after examination the Turbo Factor value of the SPACE 3D T2 technique during Olfactory Bulb examination. As a result of the study, qualitative and quantitative analysis, it was found that there was a statistically significant difference in the SPACE 3D T2 technique compared to the 2D TSE T2 technique, and the conclusion