• Title/Summary/Keyword: MRI Image

Search Result 941, Processing Time 0.024 seconds

Edge Enhancement due to Diffusion Effect in Magnetic Resonance Imaging (MR 영상에서 확산현상에 의한 경계강조)

  • Hong, I.K.;Ro, Y.M.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.124-127
    • /
    • 1995
  • Due to the self-diffusion of nuclear spins, the edge of phantoms is enhanced in the magnetic resonance imaging (MRI), especially in the case of microscopy [1]. According to several published works, theory has been established that the edge enhancement is caused by the motion narrowing around bounded regions due to diffusions of nuclear spins during data acquisition. It is found, however, that the signal decreases due to the diffusion attenuation and image is distorted as edge of the image is sharpened. In this paper, we wilt investigate this signal loss during data acquisition and its effects on image, i.e., image edge enhancement due to the diffusion phenomenon. This result is new and different from the previously discussed edge enhancement due to the diffusion, namely, by motion narrowing effect or spin bouncing effect at the boundary.

  • PDF

Clinical Application of Image Guided Surgery : Zeiss SMN System (영상유도 뇌수술 장비의 임상적 적용 : Zeiss SMN System)

  • Lee, Chea Heuck;Lee, Ho Yeon;Whang, Choong Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.72-77
    • /
    • 2000
  • The authors describe the experience with the interactive image-guided Zeiss SMN system, which has been applied to 20 patients with various intracranial lesions during one year. Preoperative radiologic evaluation was CT scan in 6 cases, MRI in 14 cases. In all except one case, average fiducial registration errors were less than 2mm. There was no statistical difference in registration error between CT and MR image. This system considered to be relatively stable with respect to soft and hardware. Also it was useful for the designing of the scalp incision and bone flap and assessing the extent of resection in tumors, especially in gliomas. Moreover, it was helpful to evaluate complex surgical anatomy in skull base surgery.

  • PDF

Multimodality and Non-rigid Registration of MRI' Brain Image

  • Li, Binglu;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.102-104
    • /
    • 2019
  • Registering different kinds of clinical images widely used in diagnostic and surgery planning. However, cause of tumor growth or effected by gravity, human tissue has plenty of non-rigid deformation with clinically. Non-rigid registration allows the mapping of straight lines to curves. Therefore, such local deformation makes registration more complicated. In this work, we mainly introduce intra-subject, inter-modality registration. This paper mainly studies the nonlinear registration method of 2D medical image registration. The general medical image registration algorithm requires manual intervention, and cost long registration time. In our work to reduce the registration time in rough registration step, the barycenter and the direction of main axis of the image is calculated, which reduces the calculation amount compared with the method of using mutual information.

Brain Extraction of MR Images

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.455-458
    • /
    • 2010
  • Extracting the brain from magnetic resonance imaging head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool produces a brain mask which may be too smooth for practical use to reduce the accuracy. This paper presents a novel and indirect brain extraction method based on non-brain tissue segmentation. Based on ITK, the proposed method allows a non-brain contour by using region growing to match with the original image naturally and extract the brain tissue. Experiments on two set of MRI data and 2D brain image in horizontal plane and 3D brain model indicate successful extraction of brain tissue from a head.

Evaluation of the Image Blurring in the Fast Spin Echo Technique ccording to Variation of the ETL (고속스핀에코기법을 이용한 MRI검사에서 ETL 변화에 따른 영상 blurring의 평가)

  • Kwon, Soon-Yong;Lim, Woo-Taek;Kang, Chung-Hawn;Kim, Kyeong-Soo;Kim, Soon-Bae;Kim, Hyun-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2013
  • The purpose of this study is to evaluate image blurring according to variation of the ETL and propose the clinically appropriate ETL range. SIEMENS MAGNETOM Skyra 3.0T and 20 channel head coil were used for the study. MRI phantom was kept the lines horizontally to three direction(X,Y,Z) of the coil and T1, T2 weighted images that used the fast spin echo technique acquired. The ETL with increase of 10 was applied from 10 to 80. In addition, the ETL with increase of 1 was applied in the interval statistically significant differences occurred. And T1, T2 weighted images that used the conventional spin echo technique acquired to compare image blurring of the images that used the fast spin echo technique. The slope of lattice in the images was measured using Image J 1.47v program to evaluate image blurring. And image blurring was determined by the degree of the slope. The statistical significance of both techniques was evaluated by the Kruskal-Wallis test of the SPSS 17.0v. And the correlation of the ETL and image blurring was evaluated quantitatively by regression analysis. The slope of the T1, T2 weighted images that used fast spin echo technique decreased as contrasted with conventional spin echo technique. In the result of the Kruskal-Wallis test, the T1, T2 weighted images that used fast spin echo technique made a significant difference with conventional spin echo technique. Particularly, in the Tomhane' T2 test, the T1, T2 weighted images made a significant difference from ETL 22 and 31 respectively. In the result of the regression analysis, the R-squared of the T1, T2 weighted images are 0.762 and 0.793. It is difficult to apply the long ETL in the T1 weighted image caused by the short TR and multi-slices study. Therefore, clinical impact according to variation of the ETL is very slight in the T1 weighted images. But the application of the proper ETL is demanded in T2 weighted images using the fast spin echo technique in order to prevent image blurring.

  • PDF

A Study on the Deviation of Cluster Based on Template Images of Korean Children's Brain SPECT Image Using the Statistical Parametic Mapping (통계적 파라미터 뇌지도작성을 이용한 국내 어린이 뇌 SPECT영상의 표준틀영상에 따른 화소덩어리의 편차연구)

  • 신동호;박성옥;권수일;조철우;윤석남;이명훈;신동오
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.45-53
    • /
    • 2004
  • SPM has been widely applied for comparison studios of the functional image data among groups of patients or individuals under different conditions and these images are from people ranging from children to adults. However, the analysis of children's brain images by using SPM can make children's brain images normalized to an adult's template image and this can result in some errors. So this study created the children's mean MR images based on the Magnetic Resonance Images of 36 normal children (age: 2~6, average age: 4.36, SD age: 1.41, M/F: 17/19), and the children's mean SPECT images by using SPECT images of 13 normal children (age: 2~6, average age: 4.80, SD age: 1.17, M/F: 10/3). We created the Korean children's brain template image, based on those mean images, and then we compared between the positions of the clusters, based on the blood flow, by normalizing ADHD children's SPECT image to Korean children's template image and SPM adult's template image. As a result of the analysis, the variation of the cluster positions was found to be a maximum of 25 ㎜. Therefore, we should be aware that we need to consider the template image and the p-value when we analyze the chlidren's brain image by using SPM.

  • PDF

THE PET/CT IN THE DIAGNOSIS OF ORAL CANCER: CLINICAL CASES (구강암의 진단에 사용되어지는 PET/CT: 임상 증례)

  • Kim, Sung-Jin;Kim, Yong-Kack;Kim, Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.2
    • /
    • pp.178-182
    • /
    • 2005
  • With the development of systemic diagnostic technique in cancer, the diagnostic methods of head and neck region are developing, also. Now, it is usually used computed tomography(CT), magnetic resornance image(MRI) in head and neck cancer and positron emission tomography(PET) is being increased in diagnostic use because of tumor specificity and accuracy. However, CT and MRI show the advantage of showing precise anatomical landmarks, but the disadvantage of these methods is much affecting by anatomical variations and changes. Otherwise, PET presents the imaging of physiologic and biochemical phenomenon and the disadvantage is the difficult differentiation of normal physiologic uptake, the lack of normal anatomical landmarks. PET/CT, the combination of clinical PET and CT imaging in a single unit is introduced recently, and it helps to get more accurate diagnostic interpretation and to improve in evaluating response to therapy, in management of patients with malignant tumors. So, we report the advantages of PET/CT in the diagnosis of oral cancer with review of literatures.

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

A Case of Poliomyelitis-like Syndrome with Typical Abnormalities in MRI (자기공명영상에서 전형적인 이상 소견을 보인 소아마비양 증후군 환자 1예)

  • Kim, Seok-Il;Koo, Ja-Seong;Yoon, Doo-Sang;Kim, Byung-Kun;Bae, Hee-Joon
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.56-59
    • /
    • 2002
  • A 28-year-old man presented with headache, fever, and myalgia. Subsequently, rapidly progressive quadriplegia with areflexia developed. CSF examination revealed moderate pleocytosis and protein elevation. MRI of brain and spinal cord showed hyperintense lesions on T2-weighted image at midbrain and ventral horns along the whole spinal cord. Serial serologic examinations of CSF for Epstein-Barr virus and cytomegalovirus were negative. Culture and neutralization tests of stool and CSF for enterovirus were negative. Although the etiologic pathogen was not identified, we diagnosed him as poliomyelitis-like syndrome by clinical features and findings of MRI.

  • PDF

FPCB-based Birdcage-Type Receiving Coil Sensor for Small Animal 1H 1.5 T Magnetic Resonance Imaging System (소 동물 1H 1.5 T 자기공명영상 장치용 유연인쇄기판 기반 새장형 수신 코일 센서)

  • Ahmad, Sheikh Faisal;Kim, Hyun Deok
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.245-250
    • /
    • 2017
  • A novel method to implement a birdcage-type receiving coil sensor for use in a magnetic resonance imaging(MRI) system has been demonstrated employing a flexible printed circuit board (FPCB) fabrication technique. Unlike the conventional methods, the two-dimensional shape of the coil sensor is first implemented as a FPCB and then it is attached to the surface of a cylindrical supporting structure to implement the three-dimensional birdcage-type coil sensor. The proposed method is very effective to implement object-specific MRI coil sensors especially for small animal measurements in research and preclinical applications since the existing well-developed FPCB-based techniques can easily meet the requirements on accuracies and costs during coil implement process. The performances of the coil sensor verified through $^1H$ 1.5T MRI measurements for small animals and it showed excellent characteristics by providing a high spatial precision and a high signal-to-noise ratio.