• 제목/요약/키워드: MRI(magnetic resonant imaging)

검색결과 4건 처리시간 0.02초

동물에서 자기 공명 영상 진단의 물리적 원리 (Physical Principles of Magnetic Resonance Imaging in Animal)

  • 김종규
    • 한국임상수의학회지
    • /
    • 제16권1호
    • /
    • pp.75-79
    • /
    • 1999
  • Magnetic resonance imaging (MRI) is an imaging technique used to produce high quality images of the inside of the animal body. MRI is based on the principles of nuclear magnetic resonance (NMR) and started out as a tomographic imaging technique, that is it produced an image of the NMR signal in a thin slice through the animal body. The animal body is primarily fat and water, Fat and water have many hydrogen atoms. Hydrogen nuclei have an NMR signal. For these reasons magnetic resonance imaging primarily images the NMR signal from the hydrogen nuclei. Hydrogen protons, within the body align with the magnetic field. By applying short radio frequency (RF) pulses to a specific anatomical slice, the protons in the slice absorb energy at this resonant frequency causing them to spin perpendicular to the magnetic field. As the protons relax back into alignment with the magnetic field, a signal is received by an RF coil that acts as an antennae. This signal is processed by a computer to produce diagnostic images of the anatomical area of interest.

  • PDF

한국 성인 남성의 공학 해석용 정밀 유한 요소 모델 생성과 뼈의 물성 획득에 관한 연구 (Generation of the FE Model of a Korean Young Male Adults and Determination of Mechanical Properties for Engineering Analysis)

  • 유승현;김학균;김종범
    • 비파괴검사학회지
    • /
    • 제26권2호
    • /
    • pp.115-121
    • /
    • 2006
  • 유한 요소 해석을 위해서는 형상과 경계, 하중 조건 그리고 물성을 결정하여야 한다. 그러나 살아 있는 인체에 대해서는 실험이 어렵기 때문에 정확한 형상과 물성을 얻기가 매우 어렵다. 본 논문에서는 한국인 표준체형을 가진 젊은 남성의 생체 자기 공명 영상(MRI : magnetic resonance imaging)을 이용하여 내부 장기를 38가지로 구역화 하고 이것을 이용하여 정밀 유한 요소 모델을 만들었다. 또한 인체를 이루고 있는 다양한 물질들 가운데 뼈에 대한 물성을 얻기 위한 연구를 시행하였다. 인체 뼈의 이방성을 표현할 수 있는 물성을 얻기 위해 성인 남성과 여성의 사체에서 얻은 대퇴골두 시편을 RUS(resonant ultrasound spectroscopy)를 사용하여 탄성 계수 행렬을 얻을 수 있었다.

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

홍삼의 자기공명 특성과 영상 분석 (Analysis of Magnetic Resonance Characteristics and Images of Korean Red Ginseng)

  • 김성민;임종국
    • Journal of Biosystems Engineering
    • /
    • 제28권3호
    • /
    • pp.253-260
    • /
    • 2003
  • In this study, the feasibility of magnetic resonance techniques for nondestructive internal quality evaluation of Korean red ginseng was examined. Relaxation time constants were measured using various grades of red ginsengs. Solid state magnetic resonance imaging technique was applied to image dried red ginsengs which have low moisture contents (about 13%). A 7 tesla magnetic resonance imaging system operating at a proton resonant frequency of 300 ㎒ was used for acquiring MR images of dried Korean red ginseng. The comparison test of cross cut digital images and magnetic resonance images of heaven grade, good grade with cavity inside, and good grade with white part inside red ginseng suggested the feasibility of the internal quality evaluation of Korean red ginsengs using MRI techniques. A good grade red ginseng included abnormal tissues such as cavities or white parts inside was observed by the signal intensity of MR image based on magnetic resonance properties of proton nucleus. Analysis on an one dimensional profile of acquired MR image of Korean red ginseng showed easy discrimination of normal and abnormal tissues. MR techniques suggested ways to detect internal defects of red ginsengs effectively.