• Title/Summary/Keyword: MR spectroscopy

Search Result 138, Processing Time 0.027 seconds

Clinical Applications of 3T MR Spectroscopy

  • Choe, Bo-Young;Baik, Hyun-Man;Chu, Myung-Ja;Jeun, Sin-Soo;Kang, Sei-Kwon;Chung, Sung-Taek;Park, Chi-Bong;Oh, Chang-Hyun;Lee, Hyoung-Koo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.345-351
    • /
    • 2002
  • The purpose of this study was to assess clinical proton MR spectroscopy (MRS) as a noninvasive method for evaluating brain tumor malignancy at 3T high field system. Using 3T MRI/MRS system, localized water-suppressed single-voxe1 technique in patients with brain tumors was employed to evaluate spectra with peaks of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine (Cr) and lactate. On the basis of Cr, these peak areas were quantificated as a relative ratio. The variation of metabolites measurements of the designated region in 10 normal volunteers was less than 10%. Normal ranges of NAA/Cr and Cho/Cr ratios were 1.67${\pm}$018 and 1.16${\pm}$0.15, respectively. NAA/Cr ratio of all tumor tissues was significantly lower than that of the normal tissues (p=0.005), but Cho/Cr ratio of all tumor tissue was significantly higher (p=0.001). Cho/Cr ratio of high-grade gliomas was significantly higher than that of low-grade gliomas (P=0.001). Except 4 menigiomas, lactate signal was observed in all tumor cases. The present study demonstrated that the neuronal degradation or loss was observed in all tumor tissues. Higher grade of brain tumors was correlated with higher Cho/Cr ratio, indicating a significant dependence of Cho levels on malignancy of gliomas. Our results suggest that clinical proton MR spectroscopy could be useful to predict tumor malignancy.

  • PDF

Evaluation of Antidepressant Drug Effect in a Depressive Animal Model by Proton MR Spectroscopy (양성자 자기공명분광법을 이용한 우울증 동물모델에서의 항우울제 약물 효능 평가)

  • Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Ho;Woo, Dong-Cheol;Yoon, Seong-Ik;Hong, Kwan-Soo;Lee, Hyun-Sung;Cheong, Chae-Joon;Jee, Bo-Keun;Hong, Sung-Tak;Kim, Hwi-Yool;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2008
  • In this study, we observed the alteration of choline signal intensity in hippocampus region of the depressive rat model induced by forced swimming test (FST). The purpose of this study was to evaluate the antidepressant efficacy in the depressive animal model using MR spectroscopy. Fourteen experimentally naive male Sprague-Dawley rats weighting $160{\sim}180\;g$ were used as subjects. Drug injection group was exposed to the FST except for control group. The drugs were administered subcutaneously (SC) in a volume equivalent to 2ml/kg. And three injections were administered 23, 5, and 1h before beginning the given test. 1H MR spectra were obtained with use of a point resolved spectroscopy (PRESS) localization sequence performed according to the following parameters: repetition time, 2500 ms; echo time, 144 ms; 512 average; 2048 complex data points; voxel dimensions, $1.5{\times}2.5{\times}2.5\;mm^3$ ; acquisition time, 25min. There were no differences in NAA/Cr and Cho/Cr ratio between the right and the left hippocampus both normal control rats and antidepressant-injected rats. Also, no differences were observed in NAA/Cr and Cho/Cr ratio between the normal control rats and the antidepressant-injected rats both the right and the left hippocampus. In this study, we found the recovery of choline signals in the depressive animal model similar to normal control groups as injecting desipramine-HCl which was antidepressant causing anti-immobility effects. Thus, we demonstrated that MR spectroscopy was able to aid in evaluating the antidepressant effect of desipramine-HCl.

  • PDF

Evaluation of Hydration Effect on Human Skin by $^1H$ MRS at 14.1T

  • Choi Chi-Bong;Hong Sung-Tak;Choe Bo-Young;Woo Dong-Chul;Yoon Seong-Ik;Cho Ji-Hyun;Lee Chul-Hyun;Cheong Chae-Joon;Park Sang-Yong;Oh Chil-Hwan
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.105-114
    • /
    • 2006
  • Purpose: We achieved high resolution MR imaging and spectra of human skin in vitro with using a 14.1 T MRI/MRS system, and evaluated the hydration effect of various cosmetic products by measuring the skin's. moisture concentration. Materials and Methods: We used the Bruker 14.1 T MRI/MRS system with a vertical standard bore that was equipped with a DMX spectrometer gradient system (200 G/cm at a maximum 40 A), RF resonators (2, 5 and 10 mm) and Para Vision software. Spin echo and fast spin echo pulse sequences were employed for obtaining the high resolution MR images. The 3D-localized point resolved spectroscopy (PRESS) method was used to acquire the MR spectra. Results: The high resolution MR images and spectra of human skin in vitro were successfully obtained on a 14.1 T system. The water concentration of human skin after applying a moisturizer was higher than that before applying a moisturizer. Conclusions: The present study demonstrated that the high-resolution MR images and spectra of human skin from a high field NMR instrument could be applicable to evaluating the hydration state of the stratum corneum.

  • PDF

Compensatory change of opposite hippocampus after temporal lobe surgery in patients with temporal lobe epilepsy Evidence from single-voxel proton MR spectroscopy

  • Lee, Sang-Hyun;Chang, Kee-Hyun;Chung, Chun-Kee;Song, In-Chan;Han, Moon-Hee
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.172-172
    • /
    • 2001
  • Purpose: To evaluate compensatory change of opposite hippocampus after temporal lobe surgery in th patient with temporal lobe epilepsy by using single-voxel proton MR spectroscopy. Method: Eighteen patients with intractable temporal lobe epilepsy (TLE) whose MR diagnos was unilateral hippocampal sclerosis (n=11) or localized unilateral anterior temporal lobe lesio (n=7) and who underwent anterior temporal lobectomy were included in the study. Singl proton MRS of opposite hippocampus was carried out on the same day or within 1 week af MR imaging before temporal lobe surgery and after over 1-year post-surgical follow-u Single voxel proton MRS were acquired using GE signa 1.5T scanner and spectrosco system (TR, 1500-2, 000: TE, 136-144). Region of interest (ROI) was placed in a simitar position for all examination to cover the medial temporal lobes including most of the head an body of hippocampus and a part of amygdala, the parahippocampal gyrus. The MR spectr were evaluated with a focus on the metabolite ratio of N-acetylaspartate (NAA choline-containing phospholipids (Cho), creatine (Cr). The metabolite ratios of NAA/ Cr were calculated from the relative peak height measurement. We evaluated change of th intensity ratio NAA/Cr between before and after surgery, to simplify quantification acro patients, because observed decreases in the ratio of NAA/Cr can be interpreted in terms o neuronal or axonal damage.

  • PDF

Diagnosis of Graft-Versus-Host Disease after Bone Marrow Transplantation by in vivo Proton MR Spectroscopy of the Liver: Correlation with Pathologic Results

  • Cho, Soon-Gu;Lee, Moon-Hee;Suh, Chang-Hae
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.135-135
    • /
    • 2001
  • Purpose: To know the differences of the proton MR spectroscopic features of the liver between th patients with graft-versus-host disease (GVHD) and without GVHD (non-GVHD) after to marrow transplantation (BMT), and to evaluate the possibility to discriminate GVHD fro non-GVHD by analysis of the in vivo proton MR spectra. Method: We evaluated the in vivo proton MR spectra from the livers of 37 patients wh underwent BMT. Our series included 14 cases with GVHD and 23 without GVHD in the liver. Nineteen men and 18 women were included in our series. All cases of GVHD and 2 o non-GVHD were confirmed by liver biopsy and remaining of non-GVHD by evaluation clinical follow up. Proton MR spectroscopy (1H-MRS) was performed at 1.5T GE Sign Horizon (GE Medical System, Milwaukee, USA) system using localized proton STEAM sequence and body coil in all cases with subjects were located in supine position. N respiratory interruption was required during the spectroscopic signal acquisition. Paramete using in MRS were: TR = over 3000ms, TE = 30ms, number of scans = 128, voxel size = ($2{\times}2{\times}2$)$cm^3$, and one NEX. We evaluated the spectra with an attention to the differences o patterns of the peaks between GVHD and non-GVHD groups. The ratio of peak area of peaks at 1.6-4.1ppm to lipid (0.9-1.6ppm) [P(1.6-4.1ppm)/P(0.9-1.6ppm)] was calculated in GVHD and non-GVHD group, and compared the results between these groups. We als evaluated the sensitivity and specificity for discriminating GVHD from non-GVHD by anal of 1H-MRS.

  • PDF

Correlation between Metabolite Peak Area Ratios on the Influence of Poor Shimming by $^1H$ MR Spectroscopy

  • Baik, Hyun-Man;Choe, Bo-Young;Suh, Tae-Suk;Lee, Hyuong-Koo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.140-148
    • /
    • 1999
  • Using 1H magnetic resonance spectroscopy (MRS), we quantitatively evaluated correlation representing linear relationship between the metabolite peak area ratios associated with poor shimming conditions. The inadequate shimming due to linear shim offsets directly affected overall MR spectral quality as well as peak area for each metabolite. Three major peaks such as N-acetylaspartate (NAA), creatine (Cr,) choline (Cho) were used as a reference for data analysis. Despite considerable variations of metabolite peak area, a significant correlation between the metabolite peak area ratios relative to Cr was established while the correlation between the peak area ratios relative to Cho and NAA was not. The present study suggested that metabolite peak area ratios based on the metabolite of Cr could be an acceptable quantification method even under the poor shimming in clinical MRS examination.

  • PDF