• Title/Summary/Keyword: MR fluid Polishing

Search Result 34, Processing Time 0.017 seconds

Development of fundamental technologies on high precision mold for micro functional elements and parts (기능성 초정밀 핵심 요소부품 제조 초정밀 금형 기반기술 개발)

  • Je, T.J.;Lee, E.S.;Choi, D.S.;Kim, J.G.;Whang, K.H.;Yoon, J.S.;Chang, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.74-77
    • /
    • 2009
  • Demands for high quality and productivity of precision mechanical parts are increasing greatly nowadays due to the rapid growth of information technologies and convergence industries. Therefore, core technologies for fabrication of precision mechanical parts are the fundamental issues, which are the precision machining, micro powder injection molding technologies, MR polishing, micro polymer processes, micro actuation modules and so on. These technologies are directly related to the mass production of high functional devices and machineries. Therefore, this study investigates the fabrication technologies of micro precision molds for advanced devices for possible commercialization in a near future.

  • PDF

Fabrication of Large Area Silicon Mirror for Integrated Optical Pickup (집적형 광 픽업용 대면적 실리콘 미러 제작)

  • Kim, Hae-Sung;Lee, Myung-Bok;Sohn, Jin-Seung;Suh, Sung-Dong;Cho, Eun-Hyoung
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.182-187
    • /
    • 2005
  • A large area micro mirror is an optical element that functions as changing an optical path by reflection in integrated optical system. We fabricated the large area silicon mirror by anisotropic etching using MEMS for implementation of integrated optical pickup. In this work, we report the optimum conditions to better fabricate and design, greatly improve mirror surface quality. To obtain mirror surface of $45^{\circ},\;9.74^{\circ}$ off-axis silicon wafer from (100) plane was used in etching condition of $80^{\circ}C$ with 40wt.% KOH solution. After wet etching, polishing process by MR fluid was applied to mirror surface for reduction of roughness. In the next step, after polymer coating on the polished Si wafer, the Si mirror was fabricated by UV curing using a trapezoid bar-type way structure. Finally, we obtained peak to valley roughness about 50 nm in large area of $mm^2$ and it is applicable to optical pickup using blu-ray wavelength as well as infrared wavelength.

  • PDF