• 제목/요약/키워드: MR engineering

검색결과 1,198건 처리시간 0.036초

밸브 내장형 MR 실린더를 이용한 힘 제어에 관한 연구 (A study on the force control of MR cylinder with built-in valves)

  • 송주영;안경관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1018-1023
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated for fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has ${\varphi}30mm{\times}300mm\;and\;{\varphi}28.5mm{\times}120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa and contact force of 320N were obtained with the input current of 1.5A. The rising time of force was 1.1s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the force control.

  • PDF

MR 댐퍼의 제어 효과 향상을 위한 Cutout 피스톤 적용에 관한 연구 (A Study on the Application of the Cutout Piston for the Improvement of the MR Damper's Control Effect)

  • 김종혁;배재성;황재혁;홍예선
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.506-513
    • /
    • 2011
  • This paper is concerned with a study on the control effect of the MR damper using the cutout piston. The MR damper has passive damping force by the oil pressure and controllable damping force by the magnetic effect. As the velocity of the MR damper's piston increases the passive damping force increases and the ratio of the controllable damping force to the total damping force is decreased. Consequently, the control performance of the MR damper is reduced according to the increase of the velocity. In this paper, the cutout piston concept is applied to the MR damper to improve MR damper's control performance by reducing the passive damping effect. The MR damper with the cutout piston has been designed and manufactured and its hydraulic and electromagnetic analysis has been performed to predict its performance. The control performances of the MR damper with the cutout piston are verified through the comparison of experiment results and simulation results.

밸브 내장형 MR 실린더에 관한 연구 (A Study on the MR Cylinder with Built-in alves)

  • 송주영;안경관
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.130-136
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated fur fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has $\varphi30mm\times300mm$ and $\varphi28.5mm\times120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa was obtained with the input current of 1.5A. The rising time was 2.3s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the position control.

Cable vibration control with a semiactive MR damper-numerical simulation and experimental verification

  • Wu, W.J.;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • 제34권5호
    • /
    • pp.611-623
    • /
    • 2010
  • Excessive stay cable vibrations can cause severe problems for cable-stayed bridges. In this paper a semiactive Magnetorheological (MR) damper is investigated to reduce cable vibrations. The control-oriented cable-damper model is first established; a computer simulation for the cable-damper system is carried out; and finally a MR damper is experimentally used to reduce the cable vibration in a laboratory environment using a semiactive control algorithm. Both the simulation and experimental results show that the semiactive MR damper achieves better control results than the corresponding passive damper.

향상된 폴리우레탄 기반 자기유변탄성체의 마찰 마모 특성연구 (Friction and Wear Properties of Improved Polyurethane Based Magneto-Rheological Elastomer)

  • 연성룡;홍성근;이광희;이철희;김철현
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.333-339
    • /
    • 2012
  • Typical magneto-rheological (MR) elastomers consist of silicon-based material. A number of studies have been carried out to evaluate the vibration and tribological characteristics of silicon-based MR e-lastomers. However, these elastomers have quite low strength, so they have low wear resistance. In this study, polyurethane-based MR elastomers with performances better than those of MR elastomers. Experiments have been conducted on different MR elastomers (Pu MR elastomer, Pu-Si MR elastomer, and Pu-wrapped-Si MR elastomer) and different predefined magnetic directions (Non-Direction, Vertical Direction, and Horizontal Directionality) to evaluate the friction and wear performance under a magnetic field. The results show that Pu-wrapped-Si MR elastomer with a horizontal predefined magnetic field has the best performance in terms of wear.

Fully coupled multi-hull/mooring/riser/hawser time domain simulation of TLP-TAD system with MR damper

  • Muhammad Zaid Zainuddin;Moo-Hyun Kim;Chungkuk Jin;Shankar Bhat
    • Ocean Systems Engineering
    • /
    • 제13권4호
    • /
    • pp.401-421
    • /
    • 2023
  • Reducing hawser line tensions and dynamic responses to a certain level is of paramount importance as the hawser lines provide important structural linkage between 2 body TLP-TAD system. The objective of this paper is to demonstrate how MR Damper can be utilized to achieve this. Hydrodynamic coefficients and wave forces for two bodies including second-order effects are obtained by 3D diffraction/radiation panel program by potential theory. Then, multi-hull-riser-mooring-hawser fully-coupled time-domain dynamic simulation program is applied to solve the complex two-body system's dynamics with the Magneto-Rheological (MR) Damper modeled on one end of hawser. Since the damping level of MR Damper can be changed by inputting different electric currents, various simulations are conducted for various electric currents. The results show the reductions in maximum hawser tensions with MR Damper even for passive control cases. The results also show that the hawser tensions and MR Damper strokes are affected not only by input electric currents but also by initial mooring design. Further optimization of hawser design with MR Damper can be done by active MR-Damper control with changing electric currents, which is the subject of the next study.

차량용 MR충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

차량용 MR 충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

A new configuration in a prosthetic knee using of hybrid concept of an MR brake with a T-shaped drum incorporating an arc form surface

  • Sayyaadi, Hassan;Zareh, Seiyed Hamid
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.275-296
    • /
    • 2016
  • This paper focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. Prosthetic knee uses magnetic fields to vary the viscosity of the MR fluid, and thereby its flexion resistance. Exerted transmissibility torque of the knee greatly depends on the magnetic field intensity in the MR fluid. In this study a rotary damper using MR fluid is addressed in which a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main objective of this study is to investigate a prosthetic knee with one activating rotary disc to accomplish necessary braking torque in walking gait via T-shaped drum with arc surface boundary and implementing of Newton's equation of motion to derive generated torque at the inner surface of the rotary drum. For this purpose a novel configuration of a T-shaped drum based on the effects of a material deformation process is proposed. In this new design, the T-shaped disc will increase the effective areas of influences in between drum and MR fluid together and the arc wall crushes the particles chains (fibrils) of the MR fluid together instead of breaking them via strain in a conventional MR brake. To verify the proposed MR brake, results of the proposed and conventional MR brakes are compared together and demonstrated that the resisting torque of the proposed MR brake is almost two times greater than that of the conventional brake.

Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration

  • Cheng, Chih-Wen;Lee, Hsien Hua;Luo, Yuan-Tzuo
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1481-1501
    • /
    • 2015
  • MR-TLCD (Magneto-Rheological Tuned Liquid Column Damper) is a new developed vibration control device, which combines the traditional passive control property with active controllability advantage. Based on traditional TLCD governing equation, this study further considers MR-fluid viscosity in the equation and by transforming the non-linear damping term into an equivalent linear damping, a solution can be obtained. In order to find a countable set of parameters for the design of the MR-TLCD system and also to realize its applicability to structures, a series of experimental test were designed and carried out. The testing programs include the basic material properties of the MR-fluid, the damping ratio of a MR-TLCD and the dynamic responses for a frame structure equipped with the MR-TLCD system subjected to strong ground excitations. In both the analytical and experimental results of this study, it is found that the accurately tuned MR-TLCD system could effectively reduce the dynamic response of a structural system.