• 제목/요약/키워드: MR Damper

검색결과 379건 처리시간 0.024초

MR 댐퍼를 이용한 철도차량 승차감 반능동 제어 (Semi-Active Control for Improving Ride Comfort in Railway Vehicle by MR Damper)

  • 신유정;유원희;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1929-1934
    • /
    • 2011
  • Recently the maximum speed becomes the most important performance in high speed train. But the speed up of train will not give the passenger good riding comfort. The semi-active suspension system by using variable damper with hydraulic solenoid valve is used to solve this problem. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. In this study, the MR(Magneto Rheological) damper was considered instead of hydraulic variable damper in order to improve riding comfort. Dynamic simulation was conducted for semi-active suspension system with MR damper was made by using Matlab-Simulink S/W. According to control strategy of MR damper for improving ride comfort in railway vehicle, The riding comfort of the railway vehicle with semi-active suspension system was analyzed and compared with conventional suspension system by using the program.

  • PDF

MR 댐퍼를 이용한 반능동식 진동 제어 (Semi-active vibration control using an MR damper)

  • 전도영;박찬호;유정열
    • 제어로봇시스템학회논문지
    • /
    • 제4권1호
    • /
    • pp.26-31
    • /
    • 1998
  • For the semiactive vibration control, a variable damper and proper control systems are essential. In this research, a controllable damper was designed using the MR fluids and its mechanical properties such as damping constant and response time were measured. Since the response time of the MR damper was much longer than nominal MR fluid response time, the time delay of the damper should be considered in the design of controllers. It is shown that the advanced On/Off vibration control which includes the damper time delay performs more effectively than the conventional one.

  • PDF

Vibration control of mechanical systems using semi-active MR-damper

  • Maiti, Dipak K.;Shyju, P.P.;Vijayaraju, K.
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.61-80
    • /
    • 2006
  • The concept of structural vibration control is to absorb vibration energy of the structure by introducing auxiliary devices. Various types of structural vibration control theories and devices have been recently developed and introduced into mechanical systems. One of such devices is damper employing controllable fluids such as ElectroRheological (ER) or MagnetoRheological (MR) fluids. MagnetoRheological (MR) materials are suspensions of fine magnetizable ferromagnetic particles in a non-magnetic medium exhibiting controllable rheological behaviour in the presence of an applied magnetic field. This paper presents the modelling of an MRfluid damper. The damper model is developed based on Newtonian shear flow and Bingham plastic shear flow models. The geometric parameters are varied to get the optimised damper characteristics. The numerical analysis is carried out to estimate the damping coefficient and damping force. The analytical results are compared with the experimental results. The results confirm that MR damper is one of the most promising new semi-active devices for structural vibration control.

MR 댐퍼를 장착한 1/4차량의 타이어 공기압에 따른 성능분석 (Performance Analysis with Different Tire Pressure of Quarter-vehicle System Featuring MR Damper)

  • 성금길;이호근;최승복;박민규;박명규
    • 한국소음진동공학회논문집
    • /
    • 제20권3호
    • /
    • pp.249-256
    • /
    • 2010
  • This paper presents performance analysis of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, MR damper is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR damper, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR damper is constructed in order to investigate the ride comfort. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. Ride comfort characteristics such as vertical acceleration RMS and weighted RMS of sprung mass are evaluated under various road conditions.

복합모드형 소형 MR감쇠장치 성능에 관한 실험적 연구 (An Experimental Study on the Performance of a Mixed Mode Type Small Scale MR Damper)

  • 이상현;민경원;이명규;박은천
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.461-468
    • /
    • 2005
  • In this paper, mixed mode magneto-rheological (MR) damper, which is applicable for vibration control of a small scale multi-story structure, is devised. First, the schematic configurations of the shear, flow, and mixed mode MR dampers are described with design constraints and then the analytical models to predict the field-dependent damping forces are derived for each type. Second, an appropriate size of the mixed mode MR damper is manufactured and its field-dependent damping characteristics are evaluated in time domain. Finally, the performance of the manufactured MR damper which is semi-actively applied to a small scale building excited by earthquake load, is numerically evaluated.

  • PDF

댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어 (Vibration Control of MR Suspension System Considering Damping Force Hysteresis)

  • 성민상;성금길;한영민;최승복;이호근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.381-386
    • /
    • 2007
  • This paper presents vibration control performances of a commercial magnetorheological (MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending (FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation (LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

  • PDF

댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어 (Vibration Control of MR Suspension System Considering Damping Force Hysteresis)

  • 성민상;성금길;한영민;최승복;이호근
    • 한국소음진동공학회논문집
    • /
    • 제18권3호
    • /
    • pp.315-322
    • /
    • 2008
  • This paper presents vibration control performances of a commercial magnetorheological(MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending(FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation(LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

소형 MR감쇠기의 성능 실험에 기초한 준능동 제어 시스템 (Semi-Active Control System Based on the Experimental Results of the Performance of a Small Scale MR Damper)

  • 민경원
    • 한국전산구조공학회논문집
    • /
    • 제19권3호
    • /
    • pp.233-238
    • /
    • 2006
  • 이 논문에서는 소형 다층 구조물의 진동제어에 적용하기 위한 복합모드의 자기유변유체(MR) 감쇠기를 개발하였다. 우선, 도식적으로 전단, 유동, 복합모드 MR감쇠기의 형태를 설계조건과 함께 표현하였고, 각각의 모드에 대하여 자기장에 따른 감쇠력을 예측하기 위한 해석모델을 유도하였다. 다음으로 적당한 크기의 복합모드 MR감쇠기를 제작하고 자기장에 따른 감쇠특성을 시간영역에서 평가하였다. 마지막으로 지진하중을 받는 소형구조물에 제작된 MR감쇠기가 준능동 제어기로 제어하였을 때의 성능을 수치적으로 평가하였다.

대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계 (Design of Semi-Active Tendon for Vibration Control of Large Structures)

  • 김상범;윤정방;구자인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

MR 댐퍼를 이용한 헬기 착륙장치 반능동제어 (Semi-Active Control of Helicopter Landing Gear using Magneto-Rheological Damper)

  • 황재업;황재혁;배재성;현영오;임경호;김두만;김태욱
    • 한국항공우주학회지
    • /
    • 제36권4호
    • /
    • pp.346-351
    • /
    • 2008
  • 본 논문에서는 MR 댐퍼를 헬기 착륙장치 완충기에 적용하여 반능동형 헬기 착륙장치 시스템을 설계하고, 헬기 착륙장치의 반능동제어를 수행하였다. MR 유체는 자기장 내에서는 유체의 물성치가 바뀌게 되는 빙햄거동을 시뮬레이션 하여 MR 댐퍼의 성능을 평가하였다. MR 댐퍼 내에서 자기장을 설계하고, 자기장의 변화에 대해 내부감쇠력의 변화를 고찰하고 자기장에 따른 착륙장치의 거동을 평가하였다. 또한 반능동형 헬기 착륙장치에 제어 알고리즘을 적용하여 착륙특성 성능을 해석하였고, 수동계의 착륙특성과 반능동형의 착륙특성을 비교하였다.