• 제목/요약/키워드: MR Clutch

검색결과 17건 처리시간 0.025초

MR 햅틱 큐를 이용한 차량 기어변속 보조장치의 성능평가 (Performance Evaluation of Vehicle Gear-shifting Supportive Device Utilizing MR Haptic Cue)

  • 한영민;민철기
    • 한국소음진동공학회논문집
    • /
    • 제23권2호
    • /
    • pp.160-166
    • /
    • 2013
  • This paper proposes a driver supportive device with haptic cue function which can be applicable for vehicles adopting manual transmission system to transmit gear-shifting information to a driver by kinesthetic forces. This haptic cue function is implemented on accelerator pedal by utilizing magnetorheological(MR) fluid and clutch mechanism. In order to achieve this goal, an MR clutch mechanism is devised to be capable of rotary motion of accelerator pedal. The proposed MR clutch is then optimally designed and manufactured under consideration of spatial limitation of vehicles. After transmission torque is experimentally evaluated according to field intensity. The manufactured MR clutch is integrated with accelerator pedal and electric motor to establish the haptic cue device. Control performances are experimentally evaluated via a simple feed-forward control algorithm.

차량용 MR 홴 클러치의 제어성능 평가 : 실험적 고찰 (Control Performance Evaluation of MR Fan Clutch for Automotive : Experimental Investigation)

  • 김은석;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.500-505
    • /
    • 2009
  • This paper presents temperature control of engine cooling system using a controllable magnetorheological (MR) fan clutch. An appropriate size of MR fan clutch is devised and modeled on the basis of Bingham model. Subsequently, an optimization to determine design parameters such as width of housing is undertaken by choosing the reciprocal of the controllable torque as an objective function. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. A sliding mode controller is then designed to control the angular velocity of the MR fan clutch using experimentally determined parameters. The designed controller is experimentally implemented and control performances of the MR fan clutch system are evaluated.

  • PDF

차량용 MR 홴 클러치의 제어성능 평가 : 실험적 고찰 (Control Performance Evaluation of MR Fan Clutch for Automotive : Experimental Investigation)

  • 김은석;최승복
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.51-57
    • /
    • 2010
  • This paper presents temperature control of engine cooling system using a controllable magnetorheological(MR) fan clutch. An appropriate size of MR fan clutch is devised and modeled on the basis of Bingham model. Subsequently, an optimization to determine design parameters such as width of housing is undertaken by choosing the reciprocal of the controllable torque as an objective function. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. A sliding mode controller is then designed to control the angular velocity of the MR fan clutch using experimentally determined parameters. The designed controller is experimentally implemented and control performances of the MR fan clutch system are evaluated.

차량용 MR 홴 클러치 설계 및 제어 (Design and Control of MR Fan Clutch for Automotive Application)

  • 김은석;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.795-801
    • /
    • 2009
  • This paper presents an optimal design of a magnetorheological(MR) fan clutch based on finite element analysis and also presents torque control of engine cooling fan using a sliding mode control. The MR fan clutch is constrained in a specific volume and the optimization problem identifies the geometric dimension of the fan clutch that minimizes an objective function. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initially designed clutch. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. After describing the configuration of the MR fan clutch, the viscous torque and controllable torque are obtained on the basis of the Bingham model of MR fluid. Then, a sliding mode controller is designed to control the torque of the fan clutch according to engine room temperature and control performance is evaluated through computer simulation.

차량용 MR 팬 클러치 설계 및 제어 (Design and Control of MR Fan Clutch for Automotive Application)

  • 김은석;손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.633-638
    • /
    • 2009
  • This paper presents an optimal design of a magnetorheological(MR) fan clutch based on finite element analysis and also presents torque control of engine cooling fan using a sliding mode control. The MR fan clutch is constrained in a specific volume and the optimization problem identifies the geometric dimension of the fan clutch that minimizes an objective function. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initially designed clutch. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. After describing the configuration of the MR fan clutch, the viscous torque and controllable torque are obtained on the basis of the Bingham model of MR fluid. Then, a sliding mode controller is designed to control the torque of the fan clutch according to engine room temperature and control performance is evaluated through computer simulation.

  • PDF

동일한 간극을 갖고 있는 ER 및 MR 클러치의 성능 비교 (Performance Comparison Between ER and MR Clutches with Same Gap Size)

  • 홍성룡;최승복
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1055-1064
    • /
    • 1999
  • In this wort ER(electro-rheological) clutch and MR(magneto-rheological) clutch are devised and their performance characteristics such as response time and controllability are compared. As a first step, field-dependent yield stresses of ER and MR fluids are distilled in shear mode. For reasonable comparison between two clutches, a nondimensional design model is established by choosing same design parameters of gap size and number. Following the manufacturing of two clutches, field-dependent torque level, response time to step input, mechanical Power generation to electric power consumption are experimentally measured and compared. In addition, in order to investigate torque controllability of the clutches a sliding mode controller is formulated and experimentally realized. Control bandwidths of two clutches are identified and tracking control responses for desired torque trajectories are presented.

MR 유체를 적용한 Multi-Plate Clutch의 최적설계 (Optimal Design of Multi-Plate Clutch Featuring MR Fluid)

  • 박진영;김영춘;오종석;전재훈;정준홍
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.77-83
    • /
    • 2020
  • 오늘날 자동차 산업의 기술 발전으로 4륜구동 기술이 승용차에도 적용되고 있으며, 이를 위해 트랜스퍼 케이스용 건식 다판클러치가 사용되고 있다. 하지만 건식 클러치의 경우 진동에 대한 문제가 발생하여 승차감에 영향을 주게 된다. 이를 해결하기 위해 4륜 구동장치의 핵심부품인 트랜스퍼케이스에 있는 다판클러치의 체결시 발생하는 충격을 저감시키고자 MR유체가 적용된 다판클러치를 제안한다. MR 다판클러치는 유체커플링 모드와 압착모드를 가지게 되며, 최적 설계를 위해 토크모델을 유도하였다. 다판클러치의 설계변수를 최적화를 위해 Ansys Maxwell을 이용하여 해석을 수행하였고, 전자기장 해석은 디스크와 플레이트의 수를 변경하였을 때 자기장의 세기를 확인하였으며, 자기장의 세기는 최대 0.45 Tesla가 도출되었다. 이를 토크방정식에 적용하여 플레이트 사이 간격을 2mm로 플레이트의 내경과 외경을 각각 45mm와 55mm로 선정하였다. 이와 같이 본 논문에서는 MR 다판클러치의 성능을 극대화할 수 있는 최적 설계기법을 제안하였다.

공작기계 적용을 위한 MR 클러치 설계 (Design of a Magneto-Rheological Fluid Clutch for Machine Tool Application)

  • 김옥현
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.57-63
    • /
    • 2009
  • Magneto-Rheological(MR) fluid composes of a base fluid and ferromagnetic particles less than tens of micrometer size dispersed in the fluid. It is called as a smart material because its rheological properties are changable by a magnetic field. Its important applications are active devices such as controllable dampers and controllable clutches. The merit of those products is that their functional characteristics are controllable such that they enable active control strategies. This paper proposes an idea for machine tool applications of the MR fluid clutch as a safety device for power transmission. FEM has been used for magnetic field analyses and the results are compared with some former experiments. Some design syntheses of the MR clutches are suggested and hopefully considered that it may be an effective safety device for power transmission of machine tools.

  • PDF

전자기장 해석을 이용한 자기점성 유체 클러치 코일 작동부 설계 (Design of Magneto-Rheological Clutch Coil Operation Unit using Electro Magnetic Field Analysis)

  • 송준한;최득환;전종균;권영철;이태행
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.22-28
    • /
    • 2009
  • Recently, there has been an active study about smart fluid to control the vibration, in which MR fluid is evaluated as most efficient because it can generate different bonding forces based on the intensity of the external magnetic fields. This paper attempts to find a mechanism that, under limited conditions during a clutch production that uses such dynamic characteristic, defects the maximum intensity of electromagnetism. Using the finite element analysis program, we predicted a change within the bonding force of the MR fluid occurring inside the clutch when it is subjected to an increased electric current. In addition, we analyzed the change in the magnetic intensity when the coil comprising the coil control center is switched to multiple lines from the standard single line, to find a mechanism that can maximize the effect. Based on this analysis, we developed the clutch and tested its function, hoping to widen future MR fluid's range of application.

자기장 및 유동 해석을 이용한 자기유변 클러치의 성능 예측 및 검증 (Design Analysis and Experimental Evaluation of an MR Fluid Clutch)

  • 이우섭;김태균;허남건;전도영
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2143-2150
    • /
    • 2000
  • An MRC(Magneto-rheological Clutch) has a great potential of application because of its good transmissibility, little wear-out and fast response to electrical control signal. Though many MRCs have been developed for years, there has not been an research on the method to predict the performance of MRC except the simplified mathematical models. But the simplified mathematical models do not fit well since their performance has close relations with shapes of clutches and viscosity distribution throughout the fluids caused by applied magnetic fields. in this study, the CFD and FEM analyses were applied to various shape of MRC and the methods were examined in experiments.