• Title/Summary/Keyword: MR Angio

Search Result 11, Processing Time 0.03 seconds

A Study on Accelerative Algorithm for Medical Images Volume Rendering (의료영상의 체적가시화를 위한 가속 알고리즘에 관한 연구)

  • 임현우;이동혁;정용규
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.228-233
    • /
    • 2000
  • 체적가시화(Volume Rendering)는 단면촬영기나 표면인식치 등을 이용해 읽어 들인 Data를 원래의 형태로 화면상에 보여 주는 것으로 일반적인 방법이 Sur face Rendering과 Volume Rendering이 있다. Volume Rendering은 Data 처리속도 문제와 한정적인 메모리 양으로 인해 지존의 알고리즘을 그대로 적용하는 경우 실시간 가시화가 힘들 뿐만 아니라 3차원 영상의 질이 저하되는 문제가 있었다 따라서, 본 연구는 3차원 영상의 질 저하 없이 실시간으로 MR Angio의 3차원 Volume 가시화를 구현한다 본 연구해서 사용되는 속도 개선 알고리즘은 Marc Levoy가 제안한 8진Tree(Octree) 자료구조를 이용하며, 또한 Volume Data 내에 존재하는 공기와 같이 가시화될 필요가 없는 부분에 대해 불필요한 계산을 피하고 가시화하고자 하는 부분만을 계산함으로써 Rendering에 소요되는 시간을 줄이는 방법을 사용한다.

  • PDF

Optimization of Flip Angle at Head & Neck MR Angiography using Gadoteridol (Gadoteridol을 이용한 Head & Neck MR Angiography에서의 적정 Flip Angle)

  • Jeong, Hyunkeun;Kim, Mingi;Song, Jaejun;Nam, Kichang;Choi, Hyunsung;Jeong, Hyundo;Kim, Hochul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.151-159
    • /
    • 2016
  • In this research, we tried to suggest moderate FA(Flip Angle) for CE(Contrast Enhnaced)-Head&Neck MR Angiography with Gadoteridol. For this study, we did test MR phantom and clinical study according to FA change. After that, quantitative analysis was progressed. The results of MR phantom study were as follow: RSP(Reaction Starting Point)was recorded within 300~400 mmol. MPSI(Max Peak Signal Intensity) was 2,086, 3,705, 5,109, 6,194, 7.096, 7,192 [a.u]. MPP(Max Peak Point) was shown at 30, 50, 50, 40, 50, 40 mmol. IRMPSI(Increase Rate of MPSI) was 77.6%, 37.9%, 21.2%, 14.6%, 1.4% as increasing of FA. The results of clinical study were as follow SICB(Signal Intensity of Carotid artery Bifurcation) was recorded respectively 392.5, 4165.2, 4270, 3502.2, 3263.7, 3119.6 [a.u]. ORA(Occurence Rate of Artifact) was increased as 0, 0, 20, 40, 50, 70%. According to this research, we are not only able to assure that increase of FA can be effect on H1 spin's SI(Signal Intensity) which was combined with gadolinium agent, but also be effect on artifact rate in blood vessel. In clinical field, we expect that CE-Head&Neck MR Angiography can be performed in a practical way with this research.

Comparative Analysis of Quantitative Signal Intensity between 1.0 mol and 0.5 mol MR Contrast Agent (1.0 mol 과 0.5 mol MR조영제의 정량적 신호강도 비교분석)

  • Jeong, Hyun Keun;Jeong, Hyun Do;Nam, Ki Chang;Jang, Geun Yeong;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.134-141
    • /
    • 2015
  • The purpose on this research is quantitatively comparing and analyzing signal intensity of 1.0mol and 0.5mol contrast agent. For this study, two MR phantoms were produced. One of them is used with 1.0mol Gadobutrol. The other is used with 0.5mol Gadoteridol. These two phantoms respectively have been scanned by SE T1 sequence which is used to get a general contrast-enhanced image in 1.5T MRI and 3D FLASH sequence which is used as enhanced angio MRI. Signal intensity was measured by scanned images as per contrast agent dilution ratio. The results were as follow: RSP(Reaction Starting Point) of the two sequences(2D SE, 3D FLASH) was respectively 6.0%, 60.0% in 0.5mol contrast and 2.0%, 20.0% in 1.0mol contrast, which means in 0.5mol contrast, RSP was formed faster than the one in 1.0mol contrast. MPSI was respectively 1358.8[a.u], 1573[a.u] in 0.5mol contrast and 1374[a.u], 1642.4[a.u] in 1.0mol contrast, which means 0.5mol contrast's MPP (0.4%, 10.0%) was formed faster than 1.0mol contrast's MPP (0.16%, 1.8%). Lastly, RA as per contrast agent dilution ratio was 27.4%, 11.8% wider in 0.5mol contrast(20747.4[a.u], 23204.6[a.u]) than in 1.0mol contrast(12691.9[a.u], 20747.4[a.u]). According to the study, we are able to assure that signal reaction time of 1.0mol contrast is slower than the one of 0.5mol contrast in contrast-enhanced MRI at two different sequences(2D SE, 3D FLASH). Furthermore, owing to the fact that there are not any signal intensity differences between 1.0mol and 0.5mol contrast, it is not true that high concentration gadolinium MR contrast agent does not always mean high signal intensity in MRI.

4D Reconstruction of Cine Cardiac MR Images (심장 자기공명영상의 4차원 재구성)

  • Lee, D.H.;Kim, J.H.;Song, I.C.;Cho, S.S.;Park, J.H.;Han, M.C.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.314-316
    • /
    • 1996
  • To diagnose cardiac malfunctions, various imaging techniques have been applied to heart : DSA(Digital Subtracted Angiography), Doppler Ultrasound, MR Angio. But it is difficult to observe three dimensional heart motion which is the most intuitive tool for diagnosis, only by using these methods. In this research, we have suggested 4-Dimensional reconstruction scheme of heart motion images that can be acquired by ECG-gated cine MR imaging. One cardiac cycle was devided into $9\sim15$ phases and for each phase 3D reconstructed volumn heart was made. We can observe 3D volumns along the cardiac cycle, time. So the results were 4-D reconstructed data.

  • PDF

3-D Radiosurgery Planning Using Personal Computer (Personal Computer를 이용한 3차원적 뇌정위적 방사선 치료계획)

  • 서태석;서덕영;박찬일;하성환;강위생
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • Recently, stereotactic radiosurgery plan is required with the information of 3-D image and dose distribution. The purpose of this research is to develop 3-D radiosurgery planning system using personal computer. The procedure of this research is based on three steps. The first step is to input the image information of the patient obtained from CT or MR scan into personal computer through on-line or digitizer. The position and shape of target are also transferred into computer using Angio or CT localization. The second step is to compute dose distribution on image plane, which is transformed into stereotactic frame coordinate. and to optimize dose distribution through the selection of optimal treatment parameters. The third step is to display both isodose distribution and patient image simultaneously using superimpose technique. This prototype of radiosurgery planning system was applied recently for several clinical cases. It was shown that our planning system is fast, accurate and efficient while making it possible to handle various kinds of image modelities such as angio, CT and MRI. It is also possible to develop 3-D planning system in radiation therapy using beam's eye view or CT simulation in future.

  • PDF

Signal Change of Iodinated Contrast Agents in MR Imaging (요오드화 조영제가 MR영상에 미치는 신호 변화)

  • Jeong, HK;Kim, Seongho;Kang, Chunghwan;Lee, Suho;Yi, Yun;Kim, Mingi;Kim, Hochul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.131-138
    • /
    • 2016
  • In this study, we tried to analyze the influence of ICM(Iodinated Contrast Media) in MR imaging compare to GBCA(Gadolinium Based Contrast Agent), and as this result we discussed whether resonable or not the protocol which is MRI scan after enhanced CT scan without proper time interval in clinical field. For this research, we assembled two phantoms. which one was iodine and another one was gadolinium. We did test two phantoms in conventional MRI scan which is T1, T2, T2 FLAIR and 3D angio. After that, quantitative analysis was progressed. The results of study were as follow : SSI(Saline's Signal Intensity) was shown as each sequences 175, 1231, 333, 37 [a.u] at iodine. and 1297, 123, 757, 232 [a.u] was recorded at gadolinium. BDEPS(the Biggest Difference of EPS) was shown as each sequences 1297, 123, 757, 232 [a.u] at iodine and 793, 6, 1495, 365 [a.u] was recorded at gadolinium. At this time, EPS(Enhancement Percentage to Saline) was shown 641.1, -90.0, 127.3, 527% at iodine and 685.1, 99.4, 365.7, 1077.4% was recorded at gadolinium. BP(BDEPS's point) was shown 900, 900, 477, 900 mmol at iodine and 4, 0.2, 0.2, 40 mmol was recorded at gadolinium. CPSS(Change Point of SI to SSI) was shown 63, 423, 63, 29 mmol at iodine and each [50, 30], [4, 0.2], [4, 1], 0.2 mmol was recorded at gadolinium. According to this research, we could not only discover the fact that was iodine could effect on MR signal, but also the pattern is different as various sequences compare to gadolinium. Therefore, we expect useful diagnostic MR image in clinical field with this quantitative data for deciding protocol regarding MRI and CT scan order.

Usefulness estimating of Time of flight(TOF) during Carotid angio inspection including Aortic arch (Aortic arch를 포함한 Carotid angio 검사 시 Time of flight(TOF)의 유용성 평가)

  • Yoo, Yeong-Jun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Purpose : The Carotid Angio inspection including Aortic arch applied to wide area is conducted as the Contrast Enhance MR Angiography(CEA) which is using a contrast medium. However it is a burden not only for someone such as infants, pregnant women and patients suffering from kidney failure but continuous use of contrast medium also can be a burden for patients who has been taken follow up inspection since diagnose lesion already. The purpose of this study is to estimate a usefulness of the Time of Flight (TOF) by comparing with CEA. Materials and methods : 10 patients with an average age of 58 (from 45 to 75) who had MRA inspection in our hospital were studied using 3.0 Tesla Aachieva (Philips, Netherland) MRI system and Sense Neuro-Vascular 16 Channels Coil. The same patient was inspected both TOF and CEA simultaneously. The TOF inspection included from Aortic arch to Willis Circle by connecting 3 TOF stacks and so did CEA inspection. The quantitative analysis was conducted through signal to noise ratio(SNR) and contrast to noise ratio(CNR) with soft tissue by setting up an area of interest on CCA bifurcatoin, ICA, ECA, MCA and VA concerning obtained image. In case of qualitative analysis, 3 radiological technologists and 1 radiologist evaluated 4 items (1: Visibility of the blood vessel, 2: Image distortion measure, 3: Overlapping measure with vein, 4: Peripheral blood vessel description measure) into five points scale (1: Very bad, 2: Bad, 3: Normal 4: Good, 5: Very good). Results : Results for the quantitative analysis was obtained by calculating the average of 5 ROIs in case of SNR and CNR separately. Results of SNR, TOF were generally measured higher than CEA (In case of TOF were 166.1, 205.2, 154.39, 172.23, 161.95, and CEA were 92.05, 95.43, 84.76, 73.69, 88.3). But according to the result of CNR, both TOF and CEA were measured similarly as 67.62, 106.71, 55.9, 73.74, 63.46 for TOF and 67.82, 71.19, 60.52, 49.45, 64.07 for CEA. Throughout every results of each ROI, SNR showed statistically meaningful consequence (0.050.05). In case of qualitative analysis the average of each evaluated item was 4.2points and 4.28points in the item1, 2.93points and 4.55points in the item2, 4.6points and 3.13points in the item3, 2.88points and 4.6points in the item4. According to the results TOF was measured higher in the item3 while in the item2 and item4 CEA was higher and in case of the item1, both CEA and TOF were similar. To sum up statistically meaningful results (p<0.05) were shown in the item2, item3 and item4 but not in the item1 (p>0.05). Conclusions : Both TOF and CEA are complementary because each inspection has pros and cons, but when inspect wide area including Aortic arch normally CEA is conducted. But TOF inspection also can be considered as alternative in terms of patients who has difficulty in the contrast medium such as infants, pregnant women and patients suffering from kidney failure and patients during follow up.

  • PDF

Web-based Medical Image Presentation (웹기반 의료영상 프레젠테이션)

  • 김동현;송승헌;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.964-971
    • /
    • 2003
  • According to the development of information processing technology and computer hardware, PACS systems have been installed in many hospitals. They can increase the efficiency and the convenience remarkably for handling medical images using digitalized data. After we compare the generation images with other cases, we can read the images correctly and decide how to treat the patients. If the results, included test method and specialist's opinion, are represented dynamically on homepage in hospital. then visitors can get their experience in directly and understand the field of examination and the area of medical treatment. In this thesis, we display the effective images such as MR of the abnormal cases according to parts and diseases, the movie and still images such as Angio image, the other multimedia materials such as the sound and text of doctor's opinions, in SMIL based on XML, concerning the problem of concurrency.

RNSXI(real-name shooting X-ray of inspector) Settlement Realization applying PACS Database, In Digital Medical environment (PACS Database를 활용한 촬영실명제 정착화 실현)

  • Kang, Ji-Youn;Lee, Lae-Gon;Kang, Doo-Hee;Lee, Hwa-Sun;Hwang, Sun-Gwang
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.5-9
    • /
    • 2007
  • As developing the medical treatment image portion with the change of these times, PACS, which is able to digitalize image portion data, has a lot of data-based image data. Applying this PACS, we would like to settle down RNSXI(real-name shooting X -ray of inspector) system. We interviewed with P ACS's operators of university hospitals which is using PACS in Seoul about the present conditions whether using of RNSXI or not. And we inquired the RNSXI equipments, applying PACS database, and Interface conditions undertook to do in our hospital. All university hospitals in Seoul are set up the P ACS system. But no hospital use the RNSXI. In our hospital, we can check inspector' name or initials who exposure x-ray with the PACS Viewer by looking over equipments(CR, DR, US, MG, MR, CT) and Interface of the DICOM Header data. However, some equipments like RF and Angio can not check inspector' name or initials. Under the Film/System environment, RNSXI system has been used frequently like that inspector's signature or initial added to a patient data. Though the digital medical treatment was developed, RNSXI system was declined. It is necessary to using RNSXI system in order to improving radiologists' rights, even if it is not under the application of the medical treatment image laws. If RNSXI system use, radiologists should specialize in their major and the Repeat rate should be reduced. In environment of PACS, RNSXI system can be used by linking both the equipments and the Interface with a production enterprise of P ACS. Therefore RNSXI system applying the P ACS datebase should settle down in our medical system for being provided lots of data.

  • PDF