• Title/Summary/Keyword: MR 유체

Search Result 237, Processing Time 0.045 seconds

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성)

  • Ahn, Young-Kong;Yang, Bo-Suk;Ha, Jong-Yong;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.349.1-349
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR mount experimently. The MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and force excitation tests were performed. The dynamic property of the mount using MR fluid was compared with that of the mount using conventional oil. (omitted)

  • PDF

Controllable Haptic Knob for Vehicle Instrument Using MR Fluids (MR 유체를 이용한 제어 가능한 차량용 햅틱 노브)

  • Kim, Chan-Jung;Han, Young-Min;Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.387-392
    • /
    • 2007
  • The paper presents control performance of a magnetorheological (MR) fluid-based haptic knob which is applicable to invehicle comfort functions. As a first step, MR fluid-based haptic knob is devised to be capable of both rotary and push motions with a single device. Under consideration of spatial limitation, design parameters are optimally determined to minimize a reciprocal of control torque using finite element analysis. The proposed haptic knob is then manufactured and its fielddependent torque is experimentally evaluated. Subsequently, in-vehicle comfort functions are constructed in virtual environment and make them communicate with the haptic knob. Control performances such as reflection force are experimentally evaluated via simple feed-forward control strategy.

  • PDF

Controllable Haptic Knob for Vehicle Instrument Using MR Fluids (MR 유체를 이용한 제어 가능한 차량용 햅틱 노브)

  • Kim, Chan-Jung;Han, Young-Min;Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.307-314
    • /
    • 2008
  • The paper presents control performance of a magnetorheological(MR) fluid-based haptic knob which is applicable to in-vehicle comfort functions. As a first step, MR fluid-based haptic knob is devised to be capable of both rotary and push motions with a single device. Under consideration of spatial limitation, design parameters are optimally determined to minimize a reciprocal of control torque using finite element analysis. The proposed haptic knob is then manufactured and its field-dependent torque is experimentally evaluated. Subsequently, in-vehicle comfort functions are constructed in virtual environment and make them communicate with the haptic knob. Control performances such as reflection force are experimentally evaluated via simple feed-forward control strategy.

Semi-active Control of Tall Building Subjected to Wind Loads Using Magneto-rheological Fluid Dampers (자기유번유체댐퍼를 이용한 대형 구조물의 풍하중에 대한 반능동 제어)

  • 윤정방;구자인;김상범;전준보
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.403-410
    • /
    • 2001
  • 고층 빌딩의 풍하중에 의한 진동을 제어하기 위하여 MR 유체감쇠기를 이용한 반능동 제어 시스템의 설계에 대하여 연구하였다. 제안된 설계기법의 효율성을 검증하기 위하여 3차 ASCE benchma가 구조물을 대상으로 수치 모의 해석을 수행하였다. 유전자 알고리즘을 사용하여 MR 감쇠기의 76층 빌딩내에서의 최적위치와 용량을 결정하였으며, clipped optimal control 제어기법을 사용하여 가속도 되먹임 구조를 갖는 MR 감쇠기의 제어 알고리즘을 구성하였다. 수치 모의 해석 결과로부터 MR 감쇠기는 ATMD와 유사한 제어 성능을 가지고 있으며 매우 작은 규모의 파워 시스템만으로 운영이 가능한 효율적이고 안정적인 시스템임을 확인할 수 있었다.

  • PDF

PWM Control of On-Off Valves using MR Fluid Spool (MR유체 스풀을 이용한 온-오프 밸브의 PWM제어)

  • 양택주;배형섭;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1709-1712
    • /
    • 2003
  • Almost the on-off type solenoid valve is used to hydraulic system. It has a strong point that concerned about rapid response, electric and hydraulic characteristic at the same time. In this paper we produced the new type spool using the MR fluid different from the others. Also we controlled a cylinder position through PWM method. And using the AMESim software, We compared our new type spool valve with existed one from data of simulation and experiment.

  • PDF

Semi-Active Control of Wind-Induced Vibration of Tall Building Using Magneto-Rheological Dampers (자기유변유체댐퍼를 이용한 대형 구조물의 풍하중에 대한 반능동 제어)

  • 윤정방;구자인;김상범;전준보
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.72-77
    • /
    • 2001
  • 고층 빌딩의 풍하중에 의한 진동을 제어하기 위하여 MR 유체감쇠기를 이용한 반능동 제어 시스템의 설계에 대하여 연구하였다. 제안된 설계기법의 효율성을 검증하기 위하여 ASCE benchmark 구조물을 대상으로 수치 모의 해석을 수행하였다. 유전자 알고리즘을 사용하여 MR 감쇠기의 76층 빌딩 내에서의 최적위치와 용량을 결정하였으며, clipped optimal control 제어기법을 사용하여 가속도 되먹임 구조를 갖는 MR 감쇠기의 제어 알고리즘을 구성하였다, 수치 모의 해석 결과로부터 MR 감쇠기는 ATMD와 유상한 제어 성능을 가지고 있으며 매우 작은 규모의 파워 시스템만으로 운영이 가능한 효율적이고 안정적인 제어 시스템임을 확인할 수 있었다.

  • PDF

Semiactive MR Fluid Suspension System Using Frequency Shaped LQ Control (주파수 성형 LQ제어기를 이용한 반능동식 자기유변유체 현가 시스템)

  • Kim, Gi-Deok;Jeon, Do-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2274-2282
    • /
    • 2000
  • An MR(Magneto-Rheological) fluid damper is designed and applied to the semi-active suspension system of a 1/4 car model. The damping constant of the MR damper changes according to input current and the time delay of the damper is included in the system dynamics. The passive method, LQ control and Frequency shaped LQ control are compared in experiments. The advantage of the proposed frequency shaped LQ control is that the ride comfort improves in frequency range from 4 to 8Hz where human body is most sensitive and the driving safety improves around the resonance frequency of unsprung mass, 11Hz. The experiments using a 1/4 car model show the effectiveness of the algorithm.

Identification of Negative Stiffness Effects in Magneto-Rheological Fluid based Squeeze Film Damper (자기유변유체를 이용한 스퀴즈 필름 댐퍼에서의 부강성 효과 규명)

  • 김근주;김정훈;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.739-744
    • /
    • 2001
  • In order to investigate the stability of magneto-rheological fluid based squeeze film damper (MR-SFD), its negative stiffness effect, which arises from magnetization of MR-SFD, is identified theoretically and experimentally. The analytical model of MR-SFD includes the magnetic circuit as well as the displacement stiffness associated with the squeeze mode of MRF. Extensive experiments are carried out to measure the magnetic attraction forces generated in the MR-SFD, with the excitation frequency and the eccentricity of the journal varied, which are controlled by an active magnetic bearing. The simulation and experimental results are found to be in good agreement. It is concluded that the negative stiffness effect dominates only in the low frequency region because its effect diminishes in the high frequency region due to the eddy-current loss.

  • PDF

Dynamic Characteristics of Magneto-rheological Fluid Actuator for Micro-motion Control (미세동작제어를 위한 자기유변유체 구동기의 동적 특성)

  • Kim, Pyunghwa;Han, Chulhee;Suresh, Kaluvan;Park, Choon-Yong;Shin, Cheol-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.511-517
    • /
    • 2016
  • This paper presents dynamic characteristics of a new actuator using magneto-rheological(MR) fluid between two electrode type coils. The concept of the actuator is to strengthen the force due to the magnetic field produced by the electrode-coil for MR fluid. The amount and direction of current input to the electrode-coils decide the characteristics of contraction-mode and extension-mode. For achieving the required actuating displacement and actuating force, the yield stress of the MR fluid between two electrode-coils is precisely changed by the input current. In this work, the MR fluid is operated in squeeze mode. The experimental results shown in this paper depict that it can be applied in the micro-level displacement and vibration control system.