• 제목/요약/키워드: MR(Magnetic Rheological) Fluid

검색결과 85건 처리시간 0.026초

차량용 MR충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

차량용 MR 충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

MR 댐퍼를 이용한 전자제어 현가장치의 승차감 평가 (Ride Comfort Evaluation of Electronic Control Suspension Using a Magneto-rheological Damper)

  • 성금길;최승복
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.463-471
    • /
    • 2013
  • This paper presents design and control of electronic control suspension(ECS) equipped with controllable magnetorheological(MR) damper for passenger vehicle. In order to achieve this goal, a cylindrical type MR fluid damper that satisfies design specification of a middle-sized commercial passenger vehicle is proposed. After manufacturing the MR damper with design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of a conventional damper. A quarter-vehicle MR ECS system consisting of sprung mass, spring, tire, controller and the MR damper is established in order to investigate the ride comfort performances. On the basis of the governing equation of motion of the suspension system, five control strategies(soft, hard, comfort, sport and optimal mode) are formulated. The proposed control strategies are then experimentally realized with the quarter-vehicle MR ECS system. Control performances such as vertical acceleration of the car body and tire deflection are evaluated in frequency domains on random road condition. In addition, performance comparison of WRMS(weighted root mean square) of the quarter-vehicle MR ECS system on random road are undertaken in order to investigate ride comfort characteristics.

MR 유체를 이용한 촉감구현장치의 설계 및 성능 평가 (Design and Performance Evaluation of Tactile Device Using MR Fluid)

  • 김진규;오종석;이상록;한영민;최승복
    • 한국소음진동공학회논문집
    • /
    • 제22권12호
    • /
    • pp.1220-1226
    • /
    • 2012
  • This paper proposes a novel type of tactile device utilizing magnetorheological(MR) fluid which can be applicable for haptic master of minimally invasive surgery(MIS) robotic system. The salient feature of the controllability of rheological properties by the intensity of the magnetic field(or current) makes this potential candidate of the tactile device. As a first step, an appropriate size of the tactile device is designed and manufactured via magnetic analysis. Secondly, in order to determine proper input magnetic field the repulsive forces of the real body parts such as hand and neck are measured. Subsequently, the repulsive forces of the tactile device are measured by dividing 5 areas. The final step of this work is to obtain desired force in real implementation. Thus, in order to demonstrate this goal a neuro-fuzzy logic is applied to get the desired repulsive force and the error between the desired and actual force is evaluated.

MR 유체를 이용한 촉감구현장치의 설계 및 성능 평가 (Design and Performance Evaluation of Tactile Device Using MR Fluid)

  • 김진규;오종석;한영민;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.415-420
    • /
    • 2012
  • This paper proposes a novel type of tactile device utilizing magnetorheological (MR) fluid which can be applicable for haptic master of minimally invasive surgery (MIS) robotic system. The salient feature of the controllability of rheological properties by the intensity of the magnetic field (or current) makes this potential candidate of the tactile device. As a first step, an appropriate size of the tactile device is designed and manufactured via magnetic analysis. Secondly, in order to determine proper input magnetic field the repulsive forces of the real body parts such as hand and neck are measured. Subsequently, the repulsive forces of the tactile device are measured by dividing 5 areas. The final step of this work is to obtain desired force in real implementation. Thus, in order to demonstrate this goal a neuro-fuzzy logic is applied to get the desired repulsive force and the error between the desired and actual force is evaluated.

  • PDF

자기 유변 유체를 이용한 반능동 감쇠기의 개발 (Development of Semi-active Damper by Magneto-Rheological Fluid)

  • 정병보;권순우;김상화;박영진
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.105-111
    • /
    • 1999
  • 감쇠기는 기계 시스템에서 에너지를 소모하는데 사용되는 요소이다. 이러한 감쇠기에는 수동 감쇠기, 능동 감쇠기, 반능동 감쇠기 등의 종류가 있다. 반능동 감쇠기는 수동 감쇠기에 비해서 더 좋은 성능을 내면서 능동 감쇠기보다는 더 작은 동력원을 필요로 하는 장치로 상황에 따라서 그 감쇠력 특성을 변화 시킬 수 있다. 본 논문은, 자기 유변 유체를 이용한 반능동 감쇠기의 개발에 관한 것이다. 자기 유변 유체는 가제어성 유체의 일종으로 인가 자기장에 대해서 그 유동학적 성질이 변하며 높은 항복응력, 낮은 점성계수, 불순물에 대한 안정성과 넓은 사용 온도 범위 등의 장점을 가진 재료이다. 이를 이용할 경우 간단한 구조로 반능동 감쇠기를 설계할 수 있을 뿐만 아니라 빠른 응답성 등의 효과도 기대할 수 있다. 본 연구에서는 자기 유변 유체를 이용하여 설계·제작된 몇 가지 종류의 감쇠기들을 통하여 그 응용 방법과 범위 그리고 응용 시 수반되는 문제점 등을 제시하였다.

  • PDF

자기유변유체를 이용한 반능동형 스퀴즈 필름 댐퍼의 해석 및 회전체 불균형 응답 제어 (Analysis of Magneto-rheological Fluid based Semi-active Squeeze Film Damper and Its Application to Unbalance Response Control of Rotor)

  • 김근주;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1005-1011
    • /
    • 2004
  • Squeeze film dampers (SFDs) have been commonly used to effectively enhance the dynamic behavior of the rotating shaft supported by rolling element bearings. However, due to the recent trends of high operating speed, high load capacity and light weight in rotating machinery, it is becoming increasingly important to change the dynamic characteristics of rotating machines in operation so that the excessive vibrations, which may occur particularly when passing through critical speeds or unstable regions, can be avoided. Semi-active type SFDs using magneto-rheological fluid (MR fluid), which responds to an applied magnetic field with a change in rheoloaical behavior, are introduced in order to find its applications to rotating machinery as an effective device attenuating unbalance responses. In this paper, a semi-active SFD using MR fluid is designed, tested and identified by means of linear analysis to investigate the capability of changing its dynamic properties such as damping and stiffness. Furthermore, the proposed device is applied to a rotor system to investigate its potential capability for vibration attenuation: an efficient method for selecting the optimal location of the proposed damper is introduced and control algorithm that could improve the unbalance response properties of a flexible rotor is also proposed.

  • PDF

작동모드에 따른 MR유체의 특성 비교 (Characteristics of MR Fluids with Different Working Modes)

  • 이호근;김기선
    • 한국산학기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.107-113
    • /
    • 2001
  • 본 논문은 전단모드와 유동모드 하에서 자기유변유체의 빙햄 및 응답특성 실험을 실시한 것이다. 실험을 위해 전단모드와 유동모드에서 작동하는 두 가지 자기점도계가 제작되었으며, 자기유변유체는 로드사의 MRF-132LD가 사용되었다. 자기장의 변화에 따른 전단응력이 다양한 온도에서 실험적으로 실시되었다. 이로부터 직선보간법을 이용하여 항복전단응력을 도출하였으며, 온도에 따른 변화가 매우 적은 것을 확인했다. 또한 자기유변유체의 사각파에 대한 응답특성이 작동모드에 따라 비교되었다.

  • PDF

마그네토리오메타 제작에 관한 연구 (A Study on the Fabrication of Magnetorheometer)

  • 김영민;신영재;이응숙;김동우;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.496-500
    • /
    • 2004
  • A new, commercially available polishing process called magnetorheological finishing is used to polish and figure precision optics. To understand and model this process correctly it is important to determine the mechanical properties of the fluid under the influence of the magnetic field. Magnetorheological (MR) fluids are commonly modeled as Bingham fluids, so one of the essential properties to measure is the yield stress. Since MR fluids are inherently anisotropic, the yield stress will depend on the mutual orientation of the magnetic field and the direction of deformation. The relative orientation of the field and deformation in polishing does not coincide with common rheological setups, so a new rheometer has been designed and tested. This new magnetorheometer design has been shown to give correct stresses during calibration experiments using Newtonian fluids with a known viscosity. The measured stress has also been shown to have a magnitude consistent with published finite element approximations for magnetic fluids. The design of the instrument was complicated because of the requirements imposed upon the magnetic field, and the difficulty in satisfying the no slip boundary condition. Our results show the importance of having a homogeneous field in the test region during measurements. The solutions to these problems and discussion of the measurements on nonmagnetic and magnetic fluids are given.

  • PDF