• Title/Summary/Keyword: MPTCP Scheduler

Search Result 4, Processing Time 0.024 seconds

Design of Bandwidth Measurement based Scheduler for Improving MPTCP Performance in Bufferbloat Environment (Bufferbloat 환경에서 MPTCP 성능 개선을 위한 대역폭 측정 기반 스케줄러 설계)

  • Kim, Min Sub;Han, Ki Moon;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1508-1516
    • /
    • 2017
  • Multipath TCP (MPTCP) is a transport layer protocol that supports multipath transmission. If a bufferbloat occurs in one of the subflows of MPTCP, HoL blocking occurs at the receiver due to the difference in packet arrival time among paths. In MPTCP, HoL blocking degrades not only the performance of the path where bufferbloat occurs, but also the performance of other paths. In this paper, we propose a bandwidth measurement based scheduler to solve this problem. Bandwidth measurement based scheduler is designed to measure the bandwidth of each subflow and to perform packet scheduling based on it. In order to verify the proposed scheduler, we implemented the proposed scheduler in the Linux kernel and constructed a testbed in which bufferbloat occurs. Experimental results show that the proposed scheduler has better performance than the legacy MPTCP in bufferbloat environment.

Implementation and Performance Evaluation of Linux-based Scheduler for improving MPTCP Performance in Heterogeneous Networks (이종 망에서 MPTCP 성능 향상을 위한 리눅스 기반의 스케줄러 구현 및 성능 평가)

  • Ahn, Jong-won;Kim, Do-ho;Kim, Min-seob;Lee, Jae-yong;Kim, Byung-chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.448-450
    • /
    • 2019
  • Multipath TCP (MPTCP) is a standardized transport layer protocol for maximizing the use of finite network resources by using multiple interfaces simultaneously. If the characteristics of each path are the same, there is an advantage in terms of stability and bandwidth utilization compared to the existing single TCP. However, if the path characteristics are different, the performance is lower than that of a single TCP. There are many complex reasons for this, but one of the biggest impacts is the bufferbloat, which dramatically increases the latency. In this paper, we implemented an algorithm that improved MPTCP performance degradation due to bufferbloat in Linux - based testbed and compared performance with existing MPTCP scheduler.

  • PDF

Reducing the Flow Completion Time for Multipath TCP

  • Heo, GeonYeong;Yoo, Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3900-3916
    • /
    • 2019
  • The modern mobile devices are typically equipped with multiple network interfaces, e.g., 4G LTE, Wi-Fi, Bluetooth, but the current implementation of TCP can support only a single path at the same time. The Multipath TCP (MPTCP) leverages the multipath feature and provides (i) robust connection by utilizing another interface if the current connection is lost and (ii) higher throughput than single path TCP by simultaneously leveraging multiple network paths. However, if the performance between the multiple paths are significantly diverse, the receiver may have to wait for packets from the slower path, causing reordering and buffering problems. To solve this problem, previous MPTCP schedulers mainly focused on predicting the latency of the path beforehand. Recent studies, however, have shown that the path latency varies by a large margin over time, thus the MPTCP scheduler may wrongly predict the path latency, causing performance degradation. In this paper, we propose a new MPTCP scheduler called, choose fastest subflow (CFS) scheduler to solve this problem. Rather than predicting the path latency, CFS utilizes the characteristics of these paths to reduce the overall flow completion time by redundantly sending the last part of the flow to both paths. We compare the performance through real testbed experiments that implements CFS. The experimental results on both synthetic packet generation and actual Web page requests, show that CFS consistently outperforms the previous proposals in all cases.

Improving the performance of Multipath TCP using Delay Alerted Path-blocking Scheduler in Heterogeneous Networks (이종 망에서의 지연경보 경로차단 스케줄러를 이용한 MPTCP성능 개선방안)

  • Kim, Min Sub;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.28-37
    • /
    • 2017
  • Multipath TCP (MPTCP), which is a layer 4 protocol that can get the reliability and the efficiency of the transmission by using multipath transfer, was standardized by the IETF. MPTCP provides superior performance when compared to a single TCP when used in a homogeneous network with similar network characteristics. However, MPTCP degrades performance when used in heterogeneous networks with different network characteristics. In this paper, we propose 'Delay-alerted path-blocking scheduler'. It measures the delay of each path and blocks the path with a long delay to reduce the order of packets in the receive buffer. If the duplicated packet is sent to the blocked path to measure the delay and the congestion on the blocking path is reduced, the blocked path is unblocked. For performance analysis, the proposed scheduler was implemented in the Linux kernel and improved performance was obtained in the test bed. We also confirmed that the proposed scheduler reduces the degradation of MPTCP performance in real wireless networks with heterogeneous path characteristics.