• Title/Summary/Keyword: MPTCP

Search Result 23, Processing Time 0.021 seconds

MPTCP based 3D Transmission Scheme Considering Mobility in PMIPv6 Networks (PMIPv6 환경에서 이동성이 고려된 MPTCP 기반 입체영상 전송 기법)

  • Youn, JooSang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.225-226
    • /
    • 2015
  • 본 논문은 PMIPv6 기반 무선 네트워크 환경에서 입체영상을 송수신하는 멀티인터페이스 이동노드의 핸드오버 수행 시 손실을 최소화하기 위한 MPTCP 기반의 입체영상 전송기법을 제안하다. 제안하는 입체영상 전송 기법은 입체영상 단말 이동 시 멀티인터페이스 간 입체영상으로 정의된 플로우의 플로우 이동성이 수행되며 플로우 이동성 발생 시 단대단 연결 단절 현상을 MPTCP Sublflow 기능을 통해 극복한다. 기존 기법에 비해 제안하는 기법은 데이터 손실 및 단대단 지연을 최소화하며 이동성 환경에서 입체영상의 좌우영상 싱크문제를 극복하는 방법이다.

  • PDF

A MULTIPATH CONGESTION CONTROL SCHEME FOR HIGH-QUALITY MULTIMEDIA STREAMING

  • Lee, Sunghee;Chung, Kwangsue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.414-435
    • /
    • 2017
  • As network adaptive streaming technology becomes increasingly common, transport protocol also becomes important in guaranteeing the quality of multimedia streaming. At the same time, because of the appearance of high-quality video such as Ultra High Definition (UHD), preventing buffering as well as preserving high quality while deploying a streaming service becomes important. The Internet Engineering Task Force recently published Multipath TCP (MPTCP). MPTCP improves the maximum transmission rate by simultaneously transmitting data over different paths with multiple TCP subflows. However, MPTCP cannot preserve high quality, because the MPTCP subflows slowly increase the transmission rate, and upon detecting a packet loss, drastically halve the transmission rate. In this paper, we propose a new multipath congestion control scheme for high-quality multimedia streaming. The proposed scheme preserves high quality of video by adaptively adjusting the increasing parameter of subflows according to the network status. The proposed scheme also increases network efficiency by providing load balancing and stability, and by supporting fairness with single-flow congestion control schemes.

Monitoring of Parallel Transfer Performance for MPTCP-based Globus Service (MPTCP기반 Globus 서비스 적용을 위한 병렬 전송성능 모니터링)

  • Hong, Wontaek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.354-356
    • /
    • 2021
  • For science applications that requires rapid transfer and sharing of large volume data, many efforts to improve data transfer performance have been made based on concurrency, parallelism and pipelining in data transfer applications such as Globus/GridFTP. In this paper, as a similar trial, experiments have been conducted for the expected transfer throughput enhancement by the increased number of network interface and parallelism in the Mptcp emulation environment and the result is presented.

  • PDF

Performance Evaluation of MPTCP over Shared Bottleneck Link (공유된 병목 링크를 경유하는 MPTCP의 성능 평가)

  • Nguyen, Van Dien;Ro, Soonghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.70-77
    • /
    • 2015
  • In this paper, we present experimental results evaluating the performance of the Multipath TCP over shared bottleneck path in series of benchmark tests. In summary, we find that the Multipath TCP's fairness as well as its competitive responds to the change of network conditions such as latency, loss rate${\cdots}$ MPTCP is extremely unfair and powerful with regular TCP in ideal network conditions but its throughput decreases clearly even less than regular TCP in worse network conditions with very high latency, higher packet loss rate.

MPTCP based Handover Scheme in PMIPv6 domain (PMIPv6 도메인에서 MPTCP 기반 Handover 기법)

  • Youn, Joo-Sang;Choi, Hun;Heo, Gyeong-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.71-80
    • /
    • 2014
  • Recently, most mobile nodes, such as smartphones, will have multiple wireless radio interfaces. This feature allows a mobile node to access a multi-network through multiple wireless radio interfaces simultaneously. Accordingly, various networking technology has been studied to use wireless multi-interface more efficiently. In this paper, MPTCP based handover scheme is proposed to reduce data loss and end-to-end latency during the handover in PMIPv6 domain. The proposed scheme performs 2-step flow mobility on the multi-path established through the multi-interface of mobile node in the handover procedure and uses MPTCP subflow function to overcome end-to-end disconnection during the handover. Therefore, the proposed scheme takes the advantage of being able to minimize data loss and a latency generated during performing the handover of mobile node.

Stochastic Optimization of Multipath TCP for Energy Minimization and Network Stability over Heterogeneous Wireless Network

  • Arain, Zulfiqar Arain;Qiu, Xuesong;Zhong, Lujie;Wang, Mu;Chen, Xingyan;Xiong, Yongping;Nahida, Kiran;Xu, Changqiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.195-215
    • /
    • 2021
  • Multipath Transport Control Protocol (MPTCP) is a transport layer protocol that enables multiple TCP connections across various paths. Due to path heterogeneity, it incurs more energy in a multipath wireless network. Recent work presents a set of approaches described in the literature to support systems for energy consumption in terms of their performance, objectives and address issues based on their design goals. The existing solutions mainly focused on the primary system model but did not discourse the overall system performance. Therefore, this paper capitalized a novel stochastically multipath scheduling scheme for data and path capacity variations. The scheduling problem formulated over MPTCP as a stochastic optimization, whose objective is to maximize the average throughput, avoid network congestion, and makes the system more stable with greater energy efficiency. To design an online algorithm that solves the formulated problem over the time slots by considering its mindrift-plus penalty form. The proposed solution was examined under extensive simulations to evaluate the anticipated stochastic optimized MPTCP (so-MPTCP) outcome and compared it with the base MPTCP and the energy-efficient MPTCP (eMPTCP) protocols. Simulation results justify the proposed algorithm's credibility by achieving remarkable improvements, higher throughput, reduced energy costs, and lower-end to end delay.

Reducing the Flow Completion Time for Multipath TCP

  • Heo, GeonYeong;Yoo, Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3900-3916
    • /
    • 2019
  • The modern mobile devices are typically equipped with multiple network interfaces, e.g., 4G LTE, Wi-Fi, Bluetooth, but the current implementation of TCP can support only a single path at the same time. The Multipath TCP (MPTCP) leverages the multipath feature and provides (i) robust connection by utilizing another interface if the current connection is lost and (ii) higher throughput than single path TCP by simultaneously leveraging multiple network paths. However, if the performance between the multiple paths are significantly diverse, the receiver may have to wait for packets from the slower path, causing reordering and buffering problems. To solve this problem, previous MPTCP schedulers mainly focused on predicting the latency of the path beforehand. Recent studies, however, have shown that the path latency varies by a large margin over time, thus the MPTCP scheduler may wrongly predict the path latency, causing performance degradation. In this paper, we propose a new MPTCP scheduler called, choose fastest subflow (CFS) scheduler to solve this problem. Rather than predicting the path latency, CFS utilizes the characteristics of these paths to reduce the overall flow completion time by redundantly sending the last part of the flow to both paths. We compare the performance through real testbed experiments that implements CFS. The experimental results on both synthetic packet generation and actual Web page requests, show that CFS consistently outperforms the previous proposals in all cases.

Optimizing Transmission Efficiency with Dynamic Bandwidth Aware Congestion Control (DBAC) in High-Speed Multipath Networks (고속 다중 경로 네트워크에서 동적 대역폭 인식 혼잡제어(DBAC)를 통한 전송 효율 최적화)

  • Han Kimoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.8
    • /
    • pp.349-355
    • /
    • 2024
  • This paper proposes a new congestion control algorithm, Dynamic Bandwidth Aware Congestion Control (DBAC), to enhance data transmission efficiency in modern network environments that require the use of multiple paths. Traditional single-path TCP has limitations that are addressed by Multipath TCP (MPTCP), which can utilize multiple paths simultaneously to maximize bandwidth and improve transmission reliability. However, MPTCP suffers performance degradation in high-speed, long-distance networks due to path characteristic asymmetry. To overcome this, DBAC combines TCP CUBIC for paths with high BDP and LIA for regular paths, optimizing resource utilization and fairness. Experimental results show that DBAC significantly improves resource utilization and transmission performance, effectively using over 80% of the bandwidth on high BDP paths, compared to less than 20% with traditional LIA.

The Impact of Heterogeneous Propagation Delays on Multipath TCP Performance

  • Le, Tuan-Anh;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.350-351
    • /
    • 2011
  • In this paper we study the impact of heterogeneous round trip times on multipath TCP (MPTCP) performance via analysis the fluid model and simulation. Using parameter 'a' in MPTCP can alleviate poor performance due to divergent RTTs between paths. Moreover, divergent RTIs in MPTCP can affect response to changes in the network conditions.

Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

  • Lim, Yeon-sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1249-1265
    • /
    • 2022
  • Video streaming has become one of the most popular applications for mobile devices. The network bandwidth required for video streaming continues to exponentially increase as video quality increases and the user base grows. Multi-Path TCP (MPTCP), which allows devices to communicate simultaneously through multiple network interfaces, is one of the solutions for providing robust and reliable streaming of such high-definition video. However, mobile video streaming over MPTCP raises new concerns, e.g., power consumption and cellular data usage, since mobile device resources are constrained, and users prefer to minimize such costs. In this work, we propose a mobile video streaming framework over MPTCP (mDASH) to reduce the costs of energy and cellular data usage while preserving feasible streaming quality. Our evaluation results show that by utilizing knowledge about video behavior, mDASH can reduce energy consumption by up to around 20%, and cellular usage by 15% points, with minimal quality degradation.