• Title/Summary/Keyword: MPSS 모델

Search Result 2, Processing Time 0.017 seconds

A Study on the UV Intensity Models and their Affecting Factors (자외선 강도 산정 모델과 영향 인자에 관한 연구)

  • Kim, Dooil;Choi, Younggyun;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.421-427
    • /
    • 2008
  • UV disinfection is widely used in water treatment facilities and wastewater treatment plant because of its effectiveness to removal of pathogen and Giardia which is resistant to traditional chemical disinfection. As a design and performance tool of UV disinfection system, 3 dimensional UV intensity models were composed and simulated to compare each other and to find affecting factors in this study. Reflection, refraction and absorption are important parameters in UV intensity model and MPSS and MSSS model can reflect these parameters while LSI model can not. Absorption is the most important parameters among the reflection, refraction, absorption and shadowing so, this should not be neglect. Based on this simulation, shadowing effect is negligible when the number of installed lamp is a few but, this effect can not be neglectable when the number of installed lamp is quite a few. The errors according to shadowing effect is increased as the number of lamp installed increased.

Development of an UV Distribution Model for the Design of a Submerged UV Disinfection Reactor and Its Application (침지형 자외선 살균조 설계를 위한 자외선 분포 모델의 개발 및 적용)

  • Park, Changyeun;Kim, Sunghong;Choi, Younggyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.505-512
    • /
    • 2021
  • A 3D model was developed to calculate the UV intensity of a submerged-type UV disinfection reactor. Numerical experiments were conducted by inputting the design factors of an open channel-type disinfection reactor and a pipe-type disinfection reactor that were installed in an actual sewage treatment plant. The following data were obtained: The average UV intensity of the installed open channel-type reactor and pipe-type reactor was 7.87 mW/cm2 and 13.09 mW/cm2, respectively; the UV dose reflecting the UV irradiation time and taking into account attenuation effects such as mixing imbalance, lamp aging, temperature, and fouling, was expected to be 21.1 mJ/cm2 and 24.8 mJ/cm2, respectively, and these values are 5 % and 24 % higher than the target UV dose of 20 mJ/cm2, respectively. By using the UV3D model, the optimal lamp position, which maximizes the average UV intensity without changing the size of the disinfection reactor or lamp output power, can be found. In this case, by only adjusting the lamp position, the average UV intensity can be increased by 0.9 % for the open channel-type and 0.5 % for the pipe-type, respectively. A better average UV intensity can be obtained by model simulation. By adjusting the horizontal and vertical ratio of the open channel-type reactor and by moving the lamp position, the average UV intensity can be increased by 7.4 % more than the present case.