• Title/Summary/Keyword: MPPT Controller

Search Result 157, Processing Time 0.019 seconds

A Study on the Development of Charging Controller in Stand-Alone PV Power Generation System (독립형 태양광 발전 시스템 충전제어기 개발에 관한 연구)

  • 곽준호;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.916-921
    • /
    • 2004
  • This paper describes microprocessor-based control of photovoltaic power conditioning system. where the microprocessor is responsible for control of output power in accordance with the generated array DC power. The microprocessor includes the control algorithm of maximum power point tracking and converter control algorithm. In this power, we have designed a MPPT(Maximum Power Point Tracker) algorithm with environment factors and a PWM(Pulse Width Modulation) algorithm for high efficiency. The controller has been tested in the laboratory with the power conditioner and shows excellent performance.

A Study on Design of the simple MPPT controller using current error signal (전류오차 신호를 이용한 간단한 MPPT제어기 설계에 관한 연구)

  • Kang Ju-Sung;Koh Kang-Hoon;Choi Kwang-Ju;Hong Doo-Sung;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.222-224
    • /
    • 2006
  • To improve the drawback of LCMPPT(Limit Cycle Maximum Power Point Tracking) controller of the existing two power conversion stages, an advanced MPPT scheme of single power conversion stage is proposed in this paper. This topology is faster on the control speed by means of current control method and the system configuration is simpler. The Authors produce a battery charger by using a cost effective one-chip processor (PIC16F877A) and evaluate another application on the basis of simulation. As a result, the proposed new LCMPPT algorithm is confirmed to be stable and useful.

  • PDF

MPPT Control of Photovoltaic using VS-PO Method (VS-PO 방법을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.45-53
    • /
    • 2015
  • A I-V and P-V characteristic of solar cell is changed to nonlinear by radiation and temperature. Therefore, to use efficiently PV system, operating point of PV system is must operate at maximum power point always. A performance of conventional the PO and the IC method is depend on the step size. So it has weakness which is must select optimal step size. Also, MPPT control applying PI and fuzzy control is not expected satisfactory performance, because of PI controller has fixed gain and fuzzy control has cumulative error by an integral calculus. Therefore, this paper proposes the VS-PO(Variable Stepsize - Perturbation & Observation) MPPT control that is automatically adjusted the step size according to the operating conditions. The VS-PO MPPT method proposed in this paper analyzes control characteristic about condition of radiation and compares with conventional methods. The validity of this paper proves using this results.

A Variable Step Size Incremental Conductance MPPT of a Photovoltaic System Using DC-DC Converter with Direct Control Scheme

  • Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.74-82
    • /
    • 2013
  • This paper presents a novel maximum power point tracking for a photovoltaic power (PV) system with a direct control plan. Maximum power point tracking (MPPT) must usually be integrated with photovoltaic (PV) power systems so that the photovoltaic arrays are able to deliver maximum available power. The maximum available power is tracked using specialized algorithms such as Perturb and Observe (P&O) and incremental Conductance (indCond) methods. The proposed method has the direct control of the MPPT algorithm to change the duty cycle of a dc-dc converter. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. The proposed method thus has not only faster dynamic performance but also high tracking accuracy. Without a conventional controller, this method can control the dc-dc converter. A simulation model and the direct control of MPPT algorithm for the PV power system are developed by Matlab/Simulink, SimPowerSystems and Matlab/Stateflow.

Battery Controller Design of Stand-alone PV System using MPPT (MPPT를 적용한 독립형 PV용 배터리 제어기 설계)

  • Im, JH;Baek, SH;Jang, IH;Mon, EA;Choi, YO;Cho, GB;Baek, HL
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.267-268
    • /
    • 2011
  • In order to increase the efficiency of the PV solar can get maximum power output from a control is up. But MPPT request Converter since Solar module always work MPP about out condition. This paper study of 170W stand-alone PV MPPT system for charge and discharge control system of the battery. The proposed system is a way of Flyback converters, and controls the algorithm used P&O control method and ATmega128.

  • PDF

Converter to Compensate for PV Module Mismatch in Solar PV String (PV 스트링의 모듈 부정합 보상용 컨버터)

  • Park, Gi-Yob;Ahn, Hee-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.123-125
    • /
    • 2009
  • Mismatch of electrical characteristics of modules in PV string invokes mismatch power loss. The mismatch occurs due to various causes such as shadow, aging, contamination, and module exchange. The concept of mismatch compensation converter(MCC) is presented in this paper to remedy the mismatch loss problem. MCC is connected to irregular modules only. MCC is composed of dc-dc converter and MPPT controller. It is noted that MPPT algorithm is employed to control MCC and is effective for maximum power available from irregular modules. The selection guide of MPPT control period is given based on the period of MPPT in PCU. The effectiveness of the MCC is verified by a prototype experiment.

  • PDF

The MPPT of Photovoltaic Solar System by Controlled Boost Converter with Neural Network

  • Cha, In-Su;Lim, Jung-Yeol;Yu, Gwon-Jong
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.255-262
    • /
    • 1998
  • The neural network can roughly be classified as the specialized control, indirect control and general schemes. Neural network is adopted for MPPT of solar array. And back propagation algorithm also is used to train neural network controller. We investigate the possibilities of $P_{max}$ control using the neural networks, and then we also examine about operating the solar cell at an optimal voltage comprise of temperature compensated voltage with boost converter. Proposed boost converter of MPPT system is studied by simulation and is implemented by using a microprocessor(80c196kc) which controls duty ratio of the boost converter.

  • PDF

The Characteristic of MPPT Control for Photovoltaic System by Temperature Compensation Effect (온도보상효과를 고려한 태양광 발전 시스템의 MPPT제어 특성)

  • Kang, Byung-Bog;Cha, In-Su;Yu, Gown-Jong;Jung, Myung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.437-439
    • /
    • 1995
  • In this paper, a mew maximum power point tracker (MPPT) using Fuzzy Controller is proposed to improve energy conversion efficiency. Temperature compensation effect means that Photovoltaic voltage is change in condition irradiation, temperature and ect. Fuzzy algorithm is applied to control Boost MPPT converter by Temperature compensation effect. In this paper, temperature compensation range is $-40^{\circ}C{\sim}+100^{\circ}C$.

  • PDF

MPPT and Yawing Control of a New Horizontal-Axis Wind Turbine with Two Parallel-Connected Generators (수평 병렬형 풍력 발전기의 요각 및 MPPT 제어)

  • Lee, Kook-Sun;Choy, Ick;Cho, Whang;Back, Ju-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • Commonly used horizontal-axis wind turbines (HAWT) have the following structure: two or three blades, a nacelle which contains power converting equipments, generators, and a tower which supports the nacelle. The generated power is transmitted from the nacelle to the ground. Due to this structure, the power transmission lines are twisted when the nacelle is yawing. Thus, slip ring or additional yaw control mechanism is required. We propose a new structure of HAWT which is free of this transmission line problem. Moreover, the size of inverter can be reduced since two generators are connected in parallel in our mechanism so that power is distributed. A controller for yawing is developed so that it works in harmony with the controller for power generation. A MPPT (Maximum Power Point tracking) algorithm is implemented for the proposed system and efficiency of the system is validated by simulation.

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.