• 제목/요약/키워드: MPN-PCR

검색결과 14건 처리시간 0.019초

Effect of Feeding Ficus infectoria Leaves on Rumen Microbial Profile and Nutrient Utilization in Goats

  • Singh, B.;Chaudhary, L.C.;Agarwal, N.;Kamra, D.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권6호
    • /
    • pp.810-817
    • /
    • 2011
  • A feeding trial was conducted to study the effect of tannin rich Pakar (Ficus infectoria) leaves on microbial profile, rumen fermentation and nutrient utilization in goats. Eight goats divided in two groups were fed pakar leaves (experimental group) and green oats (control group) as sole roughage source along with a fixed quantity of concentrate mixture for a period of 3 months. Two metabolic trials of six days duration were conducted after 30 and 90 days of experimental feeding. The dry matter intake was significantly higher (p<0.05) and digestibility's of DM, OM, CP, EE, NDF and ADF were reduced in experimental as compared with the control group. The TDN intake was similar (236.52 vs. 240.39 g/d) in both the groups. All the animals were in positive nitrogen balance. The concentration of ammonia nitrogen, TVFA, lactic acid and activities of xylanase and protease were reduced in pakar leaves fed goats. The rumen microbial profile as obtained by MPN technique showed no change in total bacterial population but total fungi and cellulolytic bacteria were reduced (p<0.05), whereas, tannin degrading/tolerant bacteria increased with the feeding of pakar leaves. Real time PCR data revealed a decrease in Ruminococcus flavefaciens, an increase in methanogens and no change in the Fibrobacter succinogenes population by feeding of pakar leaves.

양식 굴(Crassostrea gigas)에서 분리된 장염비브리오균의 독소 유전자 보유 및 항균제 감수성 (Virulence Factors and Antimicrobial Susceptibility of Vibrio parahaemolyticus Isolated from the Oyster Crassostrea gigas)

  • 김수경;안세라;박보미;오은경;송기철;김정완;유홍식
    • 한국수산과학회지
    • /
    • 제49권2호
    • /
    • pp.116-123
    • /
    • 2016
  • This study investigated the prevalence of Vibrio parahaemolyticus in the oyster Crassostrea gigas, which is commonly consumed raw. The presence of virulence factors and the antimicrobial susceptibility of isolates were also investigated. The overall prevalence rate of V. parahaemolyticus in oysters was 37.5% (36/96) and the range of concentrations was 30-11,000 MPN/100 g. PCR-based assays indicated that 9.6% (11/115) of the isolates were positive for the thermostable direct hemolysin-related hemolysin gene (trh), while none of the isolates were positive for the thermostable direct hemolysin gene (tdh). The Multiple Antibiotics Resistance (MAR) index was measured for 16 common antimicrobial agents and 46.1% (53/115) of the isolates had a MAR index > 0.2. The MAR index ranged from 0.07 to 0.73. The highest MAR index was observed with strain s150608, isolated in June 2015, which exhibited resistance to 11 antimicrobial agents. Our results demonstrate that oysters are high-risk sources of V. parahaemolyticus, although no antimicrobial agent was being used to promote growth or to treat bacterial infections in the sampled oyster-growing areas.

Occurrence of Thermophilic Campylobacter spp. Contamination on Vegetable Farms in Malaysia

  • Chai, L.C.;Ghazali, F.M.;Bakar, F.A.;Lee, H.Y.;Suhaimi, L.R.A.;Talib, S.A.;Nakaguchi, Y.;Nishibuchi, M.;Radu, S.
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권11호
    • /
    • pp.1415-1420
    • /
    • 2009
  • The aim of the present study was to examine the prevalence of thermophilic Campylobacter spp. (Campylobacter jejuni and Campylobacter coli) in soil, poultry manure, irrigation water, and freshly harvested vegetables from vegetable farms in Malaysia. C. jejuni was detected in 30.4% and 2.7% of the soil samples, 57.1 % and 0% of the manure samples, and 18.8% and 3% of the vegetable samples from farm A and farm B, respectively, when using the MPN-PCR method. Campylobacter spp. was not found in any of the irrigation water samples tested. Therefore, the present results indicate that the aged manure used by farm A was more contaminated than the composted manure used by farm B. Mostly, the leafy and root vegetables were contaminated. C. coli was not detected in any of the samples tested in the current study. Both farms tested in this study were found to be contaminated by campylobacters, thereby posing a potential risk for raw vegetable consumption in Malaysia. The present results also provide baseline data on Campylobacter contamination at the farm level.

Microbial contamination including Vibrio cholerae in fishery auction markets in West Sea, South Korea

  • Choi, Yukyung;Lee, Yewon;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Oh, Hyemin;Shin, Il-Shik;Yoon, Yohan
    • Fisheries and Aquatic Sciences
    • /
    • 제22권11호
    • /
    • pp.26.1-26.7
    • /
    • 2019
  • Background: The monitoring of pathogens of fishery auction markets is important to obtain safe fishery products regarding hygiene and sanitation. In this study, aerobic, coliform, Escherichia coli, and Vibrio cholerae were monitored in the fishery products and environmental samples obtained from fishery auction markets. Methods: The fishery products (flounder, octopus, skate, rock cod, sea bass, snail, monkfish, flatfish, comb pen shell, corb shell, conger eel, hairtail, croaker, and pilchard) were placed in filter bags, and the environmental samples (samples from the water tanks at the fishery auction markets, seawater from the fishery distribution vehicles, ice from wooden or plastic boxes, and surface samples from wooden and plastic boxes used for fish storage) were collected. Aerobic bacteria, E. coli, and coliform in the samples were enumerated on aerobic count plates and E. coli/coliform count plates, respectively. For V. cholerae O1 and V. cholerae non-O1 quantification, most probable number (MPN)-PCR analysis was performed. Results: Aerobic and coliform bacteria were detected in most samples, but E. coli was not detected. Wooden boxes were contaminated with high levels of aerobic and coliform bacteria in all seasons (spring, summer, and fall). During fall, V. cholerae non-O1 were detected in snails, hairtails, croakers, flatfishes, pilchards, plastic boxes, and water samples. Conclusions: These results indicate an increased prevalence of V. cholerae contamination in fishery products in fall, including food contact samples, which can be vehicles for cross-contamination.