• Title/Summary/Keyword: MPM(Material Point Method)

Search Result 3, Processing Time 0.02 seconds

Particle-based Numerical Modeling of Linear Viscoelastic Materials using MPM based on FEM for Taylor Impact Simulations

  • Kim, See Jo
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.207-212
    • /
    • 2018
  • Taylor rod impact tests have been the subject of many theoretical and experimental investigations. This paper discusses the numerical methods for simulating the Taylor impact test, which is widely used to obtain constitutive equations and failure conditions under high-velocity collisions of materials. With this in mind, a particle-based MPM (material point method) for linear viscoelastic solid materials was implemented, and MPM simulations for viscoelastic deformation behavior were numerically verified and confirmed by comparing the MPM and FEM results. In addition, this modeling and numerical approach could be extended to more complex viscoelastic models for basic understanding and to analyze the deformation and fracture behavior of more complicated viscoelastic material systems.

MPM-Based Angular Animation of Particles using Polar Decomposition Theory (극 분해 이론을 활용한 MPM기반의 입자 회전 애니메이션)

  • Song, Chang-yong;Kim, Ki-hoon;Kim, Sun-jeong;Kim, Changhun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.4
    • /
    • pp.13-22
    • /
    • 2022
  • In this paper, we propose a single framework based on the MPM(Material Point Method) that can represent the dynamic angular motion of the elementary particle unit. In this study, the particles can have various shapes while also describing linear and angular motion. As a result, unlike other particle-based simulations, which only represent linear movements of spherical (e.g. Circle, Sphere) particles, it is possible to express the visually dynamic motion of them. The proposed framework utilizes MPM, due to the fact that rotational motion can be decomposed and derived from large deformation. During the integration process of the presented technique, a deformation gradient tensor is decomposed by polar decomposition theory for extracting rotation tensor. By applying this together with the linear motion of each particle, as a result, it is possible to simultaneously express the angluar and linear motion of the particle itself. To verify the proposed method, we show the simulation of rotating particles scattering in the wind field, and the interaction(e.g. Collision) between a moving object and them by comparing the traditional MPM

Numerical simulations of deep penetration problems using the material point method

  • Lorenzo, R.;da Cunha, Renato P.;Cordao Neto, Manoel P.;Nairn, John A.
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • Penetration problems in geomechanics are common. Usually the soil is heavily disturbed around the penetrating bodies and large deformations and distortions can occur. The simulation of the installation of displacement piles is a good example of the interest of these types of problems for geomechanics. In this paper the Material Point Method is used to overcome the difficulties associated with the simulations of problems involving large deformation and full displacement type penetration. Recent modifications of the Material Point Method known as Generalized Interpolation Material Point and the Convected Particle Domain Interpolation are also used and evaluated in some of the examples. Herein a footing submitted to large settlements is presented and simulated, together with the processes associated to a driven pile under undrained conditions. The displacements of the soil surrounding the pile are compared with those obtained by the Small Strain Path Method. In addition, the Modified Cam Clay model is implemented in a code of MPM and used to simulate the process of driving a pile in dry sand. Good and rather encouraging agreement is found between compared data.