• Title/Summary/Keyword: MPEG-2 코덱

Search Result 79, Processing Time 0.021 seconds

Adaptive Model-Based Quantization Parameter Decision for Video Rate Control (비디오 비트율 제어를 위한 적응적 모델 기반의 양자화 변수 결정 방법)

  • Kim, Seon-Ki;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.411-417
    • /
    • 2007
  • The rate control is an essential component in video coding to provide better quality under given coding constraints, such as channel capacity, frame rates, etc. In general, source data cannot be described as a single distribution in a video coding, hence it can cause an exhaustive approximation problem. It drops a coding efficiency under weak channel environments, such as mobile communications. In this paper, we design a new quantization parameter decision model that is based on a rate-distortion function of generalized Gaussian distribution. In order to adaptively express various source data distribution, we decide a shape parameter by observing a ratio of samples, which have a small value. For experiment, the proposed algorithm is implemented into H.264/AVC video codec, and its performance is compared with that of MPEG-2 TM5, H.263 TMN8 rate control algorithm. As shown in simulation results, the proposed algorithm provides an improved quality rather than previous algorithms and generates the number of bits closed to the target bits.

Design and Implementation of IP-TV Set-Top Box for IP-TV Service (IP-TV서비스를 위한 IP-TV Set-Top Box설계와 구현)

  • Park, Hyung-Do;Lee, Kyoung-Won;Ahn, Chang-Won;Kim, Dae-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.171-174
    • /
    • 2006
  • 본 논문에서는 IP-TV 보금을 위해서 고성능 저가의 IP-TV(Internet Protocol TV) 셋탑박스의 필요성을 감안하여 TV를 통한 인터넷 컨텐츠 이용에 최적화된 IP-TV 셋탑박스를 제조업체(Ninelanes)와 공동으로 개발하였다. 개발된 셋탑박스는 브로드밴드를 이용한 VOD서비스, 1Mbps급의 DVD급 화질을 지원하고 스트리밍 비디오와 저장된 콘텐츠를 직접 재생할 수 있다. 개발된 셋탑박스는 VHS(450kbps), DVD급(750kbps), DVD(1.2Mbps), MP3, AC3, MPEG-2/4, VP4/5/6, WMV9, DVIX 등의 다양한 디지털 미디어 재생 포맷을 지원 할 수 있도록 개발되어 가격경쟁력 향상 및 멀티미디어 지원환경 구축, 인코더방식의 코덱 전환이 가능하다. 또한 고집적, 저전력, 고성능, 저가형 개발 개념으로 개발된 이 셋탑박스는 각종 IP-TV기능을 펌웨어나 소프트웨어 수정으로 시스템 변경이 가능하여 IP-TV 셋탑박스 보급에 크게 기여할 것으로 기대된다.

  • PDF

Performance Evaluation of Lossy Compression to Occupancy Map in V-PCC (V-PCC의 점유 맵 손실 압축 성능 평가)

  • Park, Jong-Geun;Kim, Yura;Kim, Hyun-Ho;Kim, Yong-Hwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.257-260
    • /
    • 2022
  • 국제표준 3차원 포인트 클라우드 압축 기술인 MPEG(Moving Picture Experts Group)-I(Immersive) V-PCC(Video-based Point Cloud Compression)에는 점유 맵(Occupancy Map) 손실/무손실 압축 기술이 포함되어 있다. V-PCC는 기존에 보급되어 있는 2차원 비디오 코덱(H.264/AVC, HEVC, AV1 등)을 그대로 활용할 수 있는 장점이 있는데, 대부분의 소비자 영상 기기에 포함되어 있는 2차원 비디오 복호화기 HW는 무손실을 지원하지 않는다. 따라서 V-PCC 복호화기의 폭넓은 상용화를 위해서는 부호화기에서 점유 맵의 손실 압축이 필수적이다. 본 논문은 V-PCC 부호화기의 점유 맵을 최소한의 압축 효율 저하로 손실 압축하기 위해 다양한 파라미터 실험을 통한 최적의 파라미터 값을 제시한다.

  • PDF

Design of Service Signaling Structure based on MMT for Terrestrial UHD Broadcasting Systems (MMT 기반 지상파 UHD 방송을 위한 서비스 시그널링 구조 설계)

  • Seo, Min-jae;Yu, Kyung-A;Paik, Jong-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.126-128
    • /
    • 2014
  • 디지털 방송기술의 비약적인 발전으로 기존 HD(High Definition) 화질의 4~16배까지 지원 가능한 UHD(Ultra High Definition) 방송 서비스가 제공되는 새로운 시대를 맞이하게 되었다. UHD 방송은 초고선명 비디오와 22.2 채널 오디오 서비스가 가능한 차세대 실감방송 기술이다. 이러한 UHD 서비스를 제공하기 위해서는 고압축 영상 코덱 기술인 HEVC(High Efficiency Video Coding), OFDM(Othogonal Frequency Division Multiplexing) 기반 대용량 전송기술과 다양한 멀티미디어 부가서비스 가능한 전송 프로토콜이 필수적으로 요구된다. 최근 UHD 방송 전송 프로토콜로 표준화 추진 중인 MMT(MPEG Media Transport)는 이기종망에서 적용할 수 있으며, 양방향 전환이 가능하여 시청자의 요구사항을 실시간으로 반영할 수 있다는 장점을 지닌다. 한편, 지상파 UHD 방송 서비스를 빠르고 효과적으로 수신하기 위해 필요한 정보인 NIT(Network Information Table), RRT(Rating Region Table) 및 SDT(Service Description Table)가 MMT 시그널링 프로토콜에서는 포함되어 있지 않다. 따라서 본 논문에서는 지상파 UHD 방송 서비스의 효과적 수신이 가능한 MMT 기반 지상파 UHD 방송을 위해 NIT, RRT 및 SDT 정보가 포함된 서비스 시그널링 구조을 제안한다.

  • PDF

Comparative Experiment of 2D and 3D DCT Point Cloud Compression (2D 및 3D DCT를 활용한 포인트 클라우드 압축 비교 실험)

  • Nam, Kwijung;Kim, Junsik;Han, Muhyen;Kim, Kyuheon;Hwang, Minkyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.553-565
    • /
    • 2021
  • Point cloud is a set of points for representing a 3D object, and consists of geometric information, which is 3D coordinate information, and attribute information, which is information representing color, reflectance, and the like. In this way of expressing, it has a vast amount of data compared to 2D images. Therefore, a process of compressing the point cloud data in order to transmit the point cloud data or use it in various fields is required. Unlike color information corresponding to all 2D geometric information constituting a 2D image, a point cloud represents a point cloud including attribute information such as color in only a part of the 3D space. Therefore, separate processing of geometric information is also required. Based on these characteristics of point clouds, MPEG under ISO/IEC standardizes V-PCC, which imitates point cloud images and compresses them into 2D DCT-based 2D image compression codecs, as a compression method for high-density point cloud data. This has limitations in accurately representing 3D spatial information to proceed with compression by converting 3D point clouds to 2D, and difficulty in processing non-existent points when utilizing 3D DCT. Therefore, in this paper, we present 3D Discrete Cosine Transform-based Point Cloud Compression (3DCT PCC), a method to compress point cloud data, which is a 3D image by utilizing 3D DCT, and confirm the efficiency of 3D DCT compared to V-PCC based on 2D DCT.

2D Interpolation of 3D Points using Video-based Point Cloud Compression (비디오 기반 포인트 클라우드 압축을 사용한 3차원 포인트의 2차원 보간 방안)

  • Hwang, Yonghae;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.692-703
    • /
    • 2021
  • Recently, with the development of computer graphics technology, research on technology for expressing real objects as more realistic virtual graphics is being actively conducted. Point cloud is a technology that uses numerous points, including 2D spatial coordinates and color information, to represent 3D objects, and they require huge data storage and high-performance computing devices to provide various services. Video-based Point Cloud Compression (V-PCC) technology is currently being studied by the international standard organization MPEG, which is a projection based method that projects point cloud into 2D plane, and then compresses them using 2D video codecs. V-PCC technology compresses point cloud objects using 2D images such as Occupancy map, Geometry image, Attribute image, and other auxiliary information that includes the relationship between 2D plane and 3D space. When increasing the density of point cloud or expanding an object, 3D calculation is generally used, but there are limitations in that the calculation method is complicated, requires a lot of time, and it is difficult to determine the correct location of a new point. This paper proposes a method to generate additional points at more accurate locations with less computation by applying 2D interpolation to the image on which the point cloud is projected, in the V-PCC technology.

Application of Adaptive Loop Filter for NRT-Based Stereoscopic Video Coding (비실시간 기반 스테레오스코픽 비디오 부호화를 위한 적응루프필터 적용기법)

  • Lee, Byung-Tak;Lee, BongHo;Choi, Haechul;Kim, Jin-Soo;Yun, Kugjin;Cheong, Won-Sik;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.261-270
    • /
    • 2013
  • A stereoscopic 3D video service is able to provide a 3D video service while keeping backward compatibility with the existing 2D video service. In the terrestrial digital television (DTV) system, a stereoscopic video codec is required to have high coding efficiency in order to provide a 3D video service in the same channel capacity. A hybrid codec consisting of MPEG-2 for base video and H.264/AVC or HEVC for 3D auxiliary video is considered. Furthermore, Non-Real-Time (NRT) delivery of stereoscopic video is also considered as a service scenario for 3DTV services to overcome the limited bandwidth. In this paper, we propose a stereoscopic video coding scheme using adaptive loop filter (ALF) which had been considered in HEVC as a pre-/post-filter for enhancing coding efficiency in NRT-based 3DTV services. In order to apply ALF as a post-filter to the reconstructed additional view coded by H.264/AVC, we devise a method in which ALF is adaptively applied based on a structure determined by using macroblock (MB) coding information such as MB mode type and reference index instead of coding unit (CU) structure on which ALF is applied in the HEVC. Experimental results shows that the proposed stereoscopic video coding scheme applying ALF obtains up to 24.9% gain of bit saving.

An Efficient Data-reuse Deblocking Filter Algorithm for H.264/AVC (H.264/AVC 비디오 코덱을 위한 효율적인 자료 재사용 디블록킹 필터 알고리즘)

  • Lee, Hyoung-Pyo;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.6
    • /
    • pp.30-35
    • /
    • 2007
  • H.264/AVC provides better quality than other algorithms by using a deblocking filter to remove blocking distortion on block boundary of the decoded picture. However, this filtering process includes lots of memory accesses, which cause delay of overall decoding time. In this paper, we propose a data-reuse algorithm to speed up the process for the deblocking filter. To reuse the data, a new filtering order is suggested. By using this order, we reduce the memory access and accelerate the deblocking filter. The modeling of proposed algorithm is compiled under ARM ADS1.2 and simulated with Armulator. The results of the experiment compared with H.264/AVC standard are achieved on average 58.45% and 57.93% performance improvements at execution cycles and memory access cycles, respectively.

Motion Vector Recovery Based on Optical Flow for Error Concealment (전송 오류를 은닉하기 위한 옵티컬 플로우 기반의 움직임 벡터 복원)

  • Suh, Jae-Won;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.630-640
    • /
    • 2002
  • The compressed video bitstream is very sensitive to transmission errors. If we lost packet or received with errors during the transmission, not only the current frame will be corrupted, but also errors will propagate to succeeding frames. Error concealment is a data recovery technique that enables the decoder to conceal effects of transmission errors by predicting the lost or corrupted video data from the previously reconstructed error free information. Motion vection recovery and motion compensation with the estimated motion vector is a good approach to conceal the corrupted macroblock data. In this paper, we prove that it is reasonable to use the estimated motion vector to conceal the lost macroblock by providing macroblock distortion models. After we propose a new motion vector recovery algorithm based on optical flow fields, we compare its performance to those of conventional error concealment methods. The proposed algorithm has smaller computational complexity than those of conventional algorithms.