• Title/Summary/Keyword: MOX

Search Result 122, Processing Time 0.019 seconds

Influence of Electrolyte Aging on Electrotinning in Phenolsulfonic Acid Bath (전기주석도금 반응에 미치는 PSA계 도금용액 노화의 영향)

  • Bae Dae Chul;Kim Tae Yeob;Cho Joon Hyung;Lee Jae Ryung;Chang Sam Kyu;Cho Kyung-mox
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.162-168
    • /
    • 2000
  • The influence of phenolsulfunate concentrations on electroplating characteristics and electrochemical behaviors was investigated with a viewpoint of electrolyte aging using the circulation cell and potentiostate And comparison of tinplate coating appearance such as glossiness and Image clarify has been also studied with varying of phenolsulfonic acid (PSA) solutions. As the aging of electrolyte proceeded, the limiting current density was moved to a lower current density region by the limitation of mass transfer, and higher phenolsulfunate concentrations resulted in the narrower optimum current density range and deterioration of coating surface of tinplates. The difference of the limiting current density was not remarkable with increasing electrolyte temperature. Thus the electrolyte aging was attributed to the limitation of thermally-activated process such as mass transfer of reducible ions. It has also been considered that the accumulation of phenolsulfonate suppressed normal electrotinning reaction by reducing the mobility of stannous ions, taking into account of the smaller effect of electrolyte aging. Experiments showed similar polarization behavior between the electrolyte of high phenolsufonate solution and the aged one, which comes to conclude that the accumulation of phenolsulfonate is one of the major causes of electrolyte aging.

Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • Luzzi, L.;Barani, T.;Boer, B.;Cognini, L.;Nevo, A. Del;Lainet, M.;Lemehov, S.;Magni, A.;Marelle, V.;Michel, B.;Pizzocri, D.;Schubert, A.;Uffelen, P. Van;Bertolus, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3367-3378
    • /
    • 2021
  • The design phase and safety assessment of Generation IV liquid metal-cooled fast reactors calls for the improvement of fuel pin performance codes, in particular the enhancement of their predictive capabilities towards uranium-plutonium mixed oxide fuels and stainless-steel cladding under irradiation in fast reactor environments. To this end, the current capabilities of fuel performance codes must be critically assessed against experimental data from available irradiation experiments. This work is devoted to the assessment of three European fuel performance codes, namely GERMINAL, MACROS and TRANSURANUS, against the irradiation of two fuel pins selected from the SUPERFACT-1 experimental campaign. The pins are characterized by a low enrichment (~ 2 wt.%) of minor actinides (neptunium and americium) in the fuel, and by plutonium content and cladding material in line with design choices envisaged for liquid metal-cooled Generation IV reactor fuels. The predictions of the codes are compared to several experimental measurements, allowing the identification of the current code capabilities in predicting fuel restructuring, cladding deformation, redistribution of actinides and volatile fission products. The integral assessment against experimental data is complemented by a code-to-code benchmark focused on the evolution of quantities of engineering interest over time. The benchmark analysis points out the differences in the code predictions of fuel central temperature, fuel-cladding gap width, cladding outer radius, pin internal pressure and fission gas release and suggests potential modelling development paths towards an improved description of the fuel pin behaviour in fast reactor irradiation conditions.