• Title/Summary/Keyword: MONSOON RAINFALL

Search Result 139, Processing Time 0.034 seconds

Characteristics of Rainfall Thresholds for the Initiation of Landslides at Chuncheon Province (춘천시에서 발생한 산사태 유발강우의 특성 분석)

  • Sang Ug, Kim;Kyong Oh, Baek
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.148-157
    • /
    • 2022
  • Every year, particularly during the monsoon rainy season, landslides at the Chuncheon province of South Korea cause tremendous damage to lives, properties, and infrastructures. More so, the high rainfall intensity and long rainfall days that occurred in 2020 have increased the water content in the soil, thereby increasing the chances of landslide occurrences. Besides this, the rainfall thresholds and characteristics responsible for the initiation of landslides in this region have not been properly identified. Therefore, this paper addresses the rainfall thresholds responsible for the initiation of landslides at Chuncheon from a regional perspective. Using data obtained from rainfall measurements taken from 2002 to 2011, we identify a threshold relationship between rainfall intensity and rainfall duration for the initiation of landslides. In addition, we identify the relationship between the rainfall intensity using a 3-day, 7-day, and 10-day antecedent rainfall observation. Specifically, we estimate the rainfall data at 8 sites where debris flow occurred in 2011 by kriging. Following this, the estimated data are used to construct the relationship between the intensity (I), duration (D), and frequency (F) of rainfall. The results of the intensity-duration-frequency (IDF) analysis show that landslides will occur under a rainfall frequency below a 2-year return period at two areas in Chuncheon. These results will be effectively used to design structures that can prevent the occurrence of landslides in the future.

Dendroclimatological Investigation of High Altitude Himalayan Conifers and Tropical Teak In India

  • Borgaonkar, H.P.;Sikder, A.B.;Ram, Somaru;Kumar, K. Rupa;Pant, G.B.
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2007
  • A wide tree-ring data network from Western Himalayan region as well as from Central and Peninsular India have been established by the Indian Institute of Tropical Meteorology (IITM), Pune, India. This includes several ring width and density chronologies of Himalayan conifers (Pinus, Picea, Cedrus, Abies)covering entire area of Western Himalaya and teak (Tectona grandis L.F.) from central and peninsular India. Many of these chronologies go back to $15^{th}$ century. Tree-ring based reconstructed pre-monsoon (March-April-May) summer climate of Western Himalaya do not show any significant increasing or decreasing trend since past several centuries. High altitude tree-ring chronologies near tree line-glacier boundary are sensitive to the winter temperature. Unprecedented higher growth in recent decades is closely associated with the warming trend over the Himalayan region. Dendroclimatic analysis of teak (Tectona grandis) from Central and Peninsular India show significant relationship with pre-monsoon and monsoon climate. Moisture index over the region indicates strong association with tree-ring variations rather than the direct influence of rainfall. It is evident that, two to three consecutive good monsoon years are capable of maintaining normal or above normal tree growth, even though the following year is low precipitation year.

  • PDF

Extreme Rainfall and Flood related to Tropical Moisture Exports Related Extreme in Korea

  • Uranchimeg, Sumiya;Kwon, Hyun-Han;Kim, Kyung-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.170-170
    • /
    • 2018
  • In some case studies, the heavy precipitation events and rapid cyclogenesis in the extratropics can be caused by moist and warm tropical air masses. Tropical Moisture Exports (TME) correspond to the meridional transport of moist air masses, primarily born in tropical oceanic areas, to higher latitudes; and are closely related to flood events, especially in the mid-latitudes. The TME for the region of interest is mostly estimated by the back tracking approach using Lagrangian Analysis Tools (LAGRANTO) from ECMWF Re-Analysis (ERA) data. In this study, we aim to estimate the TME that are related to rainfall in Korea. The major moisture sources of the TME that contribute to heavy rainfall and extreme floods in Korea are identified. The TME is found to have significant connection with extreme events in Korea such as heavy rainfall and extreme flood events. The results show the most of the moisture sources comes from the west Pacific during the warm half of the year and it contributes significantly to the annual TME and is linked to the East Asian monsoon.

  • PDF

The Impact of Monsoon on Seasonal Variability of Basin Morphology and Hydrology (호수 지형 및 수리수문학적 변화에 대한 몬순 영향)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.342-349
    • /
    • 2000
  • This paper demonstrates the influence of intensity of the monsoon on morpho-hydrological fluctuations in Taechung Reservoir during 1993${\sim}$1994. During the study, hydrological variables including rainfall, inflow, and discharge volume showed distinct contrast between 1993 and 1994. Interannaul differences in rainfall occurred during the monsoon in July${\sim}$August monsoon and influenced inflow, discharge, and water residence time (WRT). Total inflow in 1993 was four times greater than that of 1994, and summer inflow in 1993 was 8 times greater than summer 1994. Annual Mean WRT was 93.2 d in 1993 vs. 158.6 d in 1994 and the largest differences occurred between monsoons of 1993 and 1994. Morphometric variables reflected the interannual contrasts of hydrology, so that in 1993 surface area, total volume, shoreline development, and mean depth increased consistently from premonsoon to postmonsoon and over this same period in 1994 they decreased. This outcome indicates that the area of shallow littoral zones in 1993 was greater than in 1994. Also, the drainage area to surface area (D/L) at 80 m MSL was 60.7 which was much greater than values in Soyang and Andong reservoirs and natural lakes world-wide. The morpho-hydrodynamic conditions seemed to influence in-reservoir nutrient concentration which is one of the most important factors regulating the eutrophication processes. I believe, under the maximum hydrodynamic fluctuations in Korean waterbodies during the monsoon, applications of mass balance models to man-made lakes for assessments of external loading should be considered because the models can be used under the seasonally stable inflow and water residence time.

  • PDF

Overview of Climate Change and Unusual Regional Climate and the Future (기후변화와 이상기상 발생의 현황과 미래)

  • Moon Sung-Euii
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2000.11a
    • /
    • pp.3-11
    • /
    • 2000
  • The Asian summer monsoon has a profound social and economic impact in East Asia and its surrounding countries. The monsoon is basically a response of the atmosphere to the differential heating between the land mass of the Asian continent and the adjacent oceans. The atmospheric response, however, is quite complicated due to the interactions between the atmospheric heat sources, land-sea contrast, and topography, The occurrence of extreme summertime floods in Korea, Japan, and China in 1998 and 1999 has highlighted the range of variability of the East Asian summertime monsoon circulation and spurred interest in investigating the cause of such extreme variability. While ENSO is often considered a prime mechanism responsible for the unusual hydrological disasters in East Asia, understanding of the connection between ENSO and the East Asian monsoon is hampered by their dynamic complexities. Along with a recent phenomenon of weather abnormalities observed in many parts of the globe, Korea has seen its share of increased weather abnormalities such as the record-breaking heavy rainfalls due to a series of flash floods in the summers of 1998 and 1999, following devastating Yangtze river floods in China. A clear regime shift is found in the tropospheric mean temperature in the northern hemisphere middle latitudes and the surface temperature over the Asian continent during the summer with a sudden warming since 1977. Either decadal climate variation or climate regime shift in the Asian continent is evident and may have altered the characteristics of the East Asian summer monsoon. Considering the summertime rainfall amount in Korea is overall increased lately, the 1998/99 heavy rainfalls may not be isolated episodes related only to ENSO, but could be a part of long-term climate variation. The record-breaking heavy summer rainfalls in Korea may not be direct impact of ENSO. Instead, the effects of decadal climate variation and ENSO may be coupled to each other and also to the East Asian summer monsoon system, while their individual impacts are difficult to separate.

  • PDF

Long-Term Annual Trend Analysis of Epilimnetic Water Quality and Their Longitudinal Heterogeneities in Lake Soyang (소양호 표층수 수질의 연별 추이 및 상 ${\cdot}$ 하류 이질성 분석)

  • Lee, Hye-Won;An, Kwang-Guk;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.36-44
    • /
    • 2002
  • The spatial and temporal trends of water qualities in Lake Soyang was statistically analyzed in this study. The water qualities include nutrients, ionic contents and chlorophyll-a (Chl-a) measured during 1993${\sim}$2000. The rainfall intensity and runoff from the catchment appeared to play an important role in water quality trends in the lake. According to seasonal Mann-Kendall test, conductivity, TP, and Ctl-a did not show any trends of increase or decrease over the 8 year period, while TN declined slightly. It was found that the variation of TP was a function of interannual inflow and rainfall. In the analyses of spatial trend, conductivity, based on the mean by site, showed a downlake decline over the eight year period. Minimum conductivity was found in the headwaters during summer monsoon of July to August and near the dam during October. This result indicates a time-lag phenomenon that the headwater is diluted by rainwater immediately after summer monsoon rain and then the lake water near the dam is completely diluted in October. During summer period, TP and TN had an inverse relation with conductivity values. Concentrations of TP peaked during July to September in the headwaters and during September in the downlake. Also, TN increase during the summer and was more than 1.5 mg/L regardless of season and location, indicating a consistent eutrophic state. Values of Chl-a varied depending on location and season, but peaked in the midlake rather than in the headwaters during the monsoon. Regression analyses of log-transformed seasonal Chl-a against TP showed that value of $R^2$ was below 0.003 in the premonsoon and monsoon seasons but was 0.82 during the postmonsoon, indicating a greater algal response to the phosphorus during the postmonsoon. In contrast, TN had no any relations with Chl-a during all seasons.

A Study on Vertical Distribution and Origin of Particulate Organic Matter in Shingu Reservoir in Pre-monsoon and Post-monsoon Period - Application of Carbon and Nitrogen Stable Isotope Ratio - (하계 강우기 전.후 신구저수지 내 입자성유기물의 수직분포 및 기원 연구 - 탄소 및 질소 안정동위원소비의 활용 -)

  • Kim, Min-Seob;Lee, Yeon-Jung;Shin, Kyung-Hoon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.27-34
    • /
    • 2008
  • The vertical distribution and origin of particulate organic matter (POM) were investigated in Shingu reservoir on 4th July (pre-monsoon) and 7th August (post-monsoon) 2006. High turbid water (120 NTU) were found at 4.5 m water depth in postmonsoon period. The average C/N ratio of POM was about 5.70 and 6.96 in surface water and bottom water, respectively in pre-monsoon period, exhibiting the close values to its ratio in phytoplankton cell. However, the average C/N ratio was 7.10 in surface water and 12.81 in bottom water in post-monsoon period. In addition, the ${\delta}^{13}C$ values of POM in pre-monsoon period ranged from -25.1%o to -26.1%o in whole water column, but the ${\delta}^{13}C$ values of POM in post-monsoon period showed relatively wide range between -23.2%o and -27.5%o. The apparently lighter values (average -27.5%o) in near bottom water (4.5 m water depth) demonstrate that POM in high turbid water in post-monsoon period may be derived from the outside terrestrial plants through heavy rainfall during the summer monsoon period. The present study suggests that carbon and nitrogen stable isotope ratios as well as C/N ratios should be useful indexes to clarify the origin of POM.

Intercomparison of the East-Asian Summer Monsoon on 11-18 July 2004, simulated by WRF, MM5, and RSM models (WRF, MM5, RSM 모형에서 모의한 2004년 7월 11-18일의 동아시아 몬순의 비교)

  • Ham, Su-Ryun;Park, Seon-Joo;Bang, Cheol-Han;Jung, Byoung-Joo;Hong, Song-You
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 2005
  • This study compares the summer monsoon circulations during a heavy rainfall period over the Korean peninsular from 11 to 18 July 2004, simulated by three widely used regional models; WRF, MM5, and RSM. An identical model setup is carried out for all the experiments, except for the physical option differences in the RSM. The three models with a nominal resolution of about 50 km over Korea are nested by NCEP-DOE reanalysis data. Another RSM experiment with the same cumulus parameterization scheme as in the WRF and MM5 is designed to investigate the importance of the representation of subgrid-scale parameterized convection in reproducing monsoonal circulations in East Asia. All thee models are found to be capable of reproducing the general distribution of monsoonal precipitation, extending northeastward from south China across the Korean peninsula, to northern Japan. The results from the WRF and MM5 are similar in terms of accumulated precipitation, but a slightly better performance in the WRF than in the MM5. The RSM improves the bias for precipitation as compared to those from the WRF and MM5, but the pattern correlation is degraded due to overestimation of precipitation in northern China. In the comparison of simulated synoptic scale features, the RSM is found to reproduce the large-scale features well compared to the results from the MM5 and WRF. On the other hand, the simulated precipitation from the RSM with the convection scheme used in the MM5 and WRF is closer to that from the WRF and MM5 simulations, indicating the significant dependency of simulated precipitation in East Asia on the cumulus parameterization scheme.

Lightning activity in summer monsoon precipitation over Korean peninsula

  • Kar, S.K.;Ha, Kyung-Ja
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.366-366
    • /
    • 2002
  • Cloud-to ground lightning and total precipitation over Korean peninsula during the summer monsoon season are studied extensively with a special emphasis on the characteristics of convective precipitation. Ten years (1988-1997) lightning and rainfall data and a temporal and spatial scale of one month and 10$^2$ km$^2$ respectively are used to calculate the monthly number of CG lightning flash count. Monsoonal convective activity is higher over the west coast with maxima at two different regions, one in the northern part which increases nortwestward and the other is at the middle west coast of Korea increasing towards the west coast. East coast represents the minimum value of monsoonal convective activity. In the east coast of Korean peninsula, particularly in the region east of Tae-back mountain, the value of Rain yield, (which is defined as the ratio of total precipitation to CG flash count over a common area), is maximum with an average value of 3$\times$10$^{8}$ kg fl$^{-1}$, while the minimum value of rain yield is occurred in the west of Tae-back mountain, with an average value of 0.8$\times$10$^{8}$ kg fl$^{-1}$. Results show in the west coast stations, nearly 82% of the total rainfall is convective in nature, at the middle of the peninsula 53% of the total rain is convective while in the east coast stations 46% contribution from the convective rain is seen. Kanghwa receives the maximum convective rain while at Ulsan the convective rain is minimum. Correlation coefficient between the total precipitation and CG lightning during the summer monsoon season is 0.54.

  • PDF