• Title/Summary/Keyword: MOMP

Search Result 5, Processing Time 0.017 seconds

Immunization with Major Outer Membrane Protein of Vibrio vulnificus Elicits Protective Antibodies in a Murine Model

  • Jung Cho-Rok;Park Min-Jung;Heo Moon-Soo
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.437-442
    • /
    • 2005
  • Sera from rabbits were infected with Vibrio vulnificus containing an antibody against major outer membrane protein (MOMP). MOMP of V. vulnificus ATCC 27562 were isolated and purified by Sarkosyl and TritonX-100 dual treatment. Molecular size of MOMP was identified as 36-kDa on $13\%$ SDS-PAGE. The sequence of the first 26 amino acid residues from the N-terminal end of the protein is AELYNQDGTSLDMGGRAEARLSMKDG, which is a perfect match with OmpU of V. vulnificus CMCP6 and YJ016. MOMP specific IgM and IgG were investigated in groups of mice. The group of mice immunized with MOMP and Alum showed higher levels of IgG2b than the group immunized with only MOMP. Vaccination with MOMP resulted in protective antibodies in the mouse infection experiment.

Over-expression of Chlamydia psittaci MOMP in Escherichia coli and its purification (대장균에서 Chlamydia psittaci MOMP 유전자의 과발현과 순수분리)

  • Ha, Jung-Soon;Lee, Do-Bu;Han, Sang-Hoon;Lim, Yoon-Kyu;Yoon, Byoung-Su
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • Generally known psittacosis or ornithosis is a disease of birds caused by the bacterium Chlamydia psittaci. Humans are accidential hosts and are most commonly infected from avian sources. It raises hepatitis or neurosis. As major outer membrane protein (MOMP) of Chlamydia psittaci has been known to play a role in the avoidance of host immune defenses, research on developing a Chlamydia vaccine has focused on the MOMP. In this study, the gene encoding the major outer membrane protein (MOMP) of the Chlamydia psittaci strain 6BC was cloned and expressed in Escherichia coli strain M-15. The recombinant DNA was cloned by fusion prokaryotic expression vector pQE30-GFPII. Expression of the recombinant protein was performed in E. coli and was induced by IPTG. The size of expressed recombinant protein is 74.220 kDa (MOMP, 43.260 kDa; GFP expression region, 30 kDa; $6{\times}His$ tag, 960Da). This protein was purified by using his-tagging-inclusion body. Recombinant protein was reconfirmed through ELISA test and western blot with antibody against pQE30-GFPII. It will be useful antibody development.

Soluble Expression of OmpA from Haemophilus parasuis in Escherichia coli and Its Protective Effects in the Mouse Model of Infection

  • Ahn, Jungoh;Hong, Minhee;Yoo, Sungsik;Lee, Eungyo;Won, Hokeun;Yoon, Injoong;Jung, Joon-Ki;Lee, Hongweon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1307-1309
    • /
    • 2012
  • Haemophilus parasuis causes contagious porcine Gl$\ddot{a}$sser's disease leading to severe losses in the swine industry. In this study, we established an efficient Escherichia coli-based system for the expression of H. parasuis major outer-membrane protein (MOMP) that has been known as a good vaccine candidate against Gl$\ddot{a}$sser's disease. Use of an E. coli-derived pelB leader sequence made it possible to produce recombinant MOMP (rMOMP) as the soluble forms without an additional refolding process. Using two different animal models, it was evaluated that the rMOMP was capable of inducing a significant immune response and providing protection against H. parasuis infection.

Partial Characterization of the Pathogenic Factors Related to Chlamydia trachomatis Invasion of the McCoy Cell Membrane

  • Yeo, Myeng-Gu;Kim, Young-Ju;Park, Yeal
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • The present study was performed to identify pathogenic factors of Chlamydia trachomatis, which invade the host cell membrane. We prepared monoclonal antibody against C. trachomatis and searched for pathogenic factors using this antibody, and subsequently identified the surface components of the elementary body of C. trachomatis, i.e., major outer membrane protein (MOMP), lipopolysaccharide (LPS), and two other surface exposure proteins. These proteins are believed to be important in the pathogenesis of host cell chlamydial infection. Additionally, to identify factors related to the host cell and C. trachomatis, we prepared C. trachomatis infected and non-infected McCoy cell extracts, and reacted these with anti-chlamydial LPS monoclonal antibody. We found that anti-chlamydial LPS monoclonal antibody reacted with a 116 kDa proteinaceous McCoy cell membrane component.

Purification and Characterization of Mitochondrial Mg2+-Independent Sphingomyelinase from Rat Brain

  • Jong Min Choi;Yongwei Piao;Kyong Hoon Ahn;Seok Kyun Kim;Jong Hoon Won;Jae Hong Lee;Ji Min Jang;In Chul Shin;Zhicheng Fu;Sung Yun Jung;Eui Man Jeong;Dae Kyong Kim
    • Molecules and Cells
    • /
    • v.46 no.9
    • /
    • pp.545-557
    • /
    • 2023
  • Sphingomyelinase (SMase) catalyzes ceramide production from sphingomyelin. Ceramides are critical in cellular responses such as apoptosis. They enhance mitochondrial outer membrane permeabilization (MOMP) through self-assembly in the mitochondrial outer membrane to form channels that release cytochrome c from intermembrane space (IMS) into the cytosol, triggering caspase-9 activation. However, the SMase involved in MOMP is yet to be identified. Here, we identified a mitochondrial Mg2+-independent SMase (mt-iSMase) from rat brain, which was purified 6,130-fold using a Percoll gradient, pulled down with biotinylated sphingomyelin, and subjected to Mono Q anion exchange. A single peak of mt-iSMase activity was eluted at a molecular mass of approximately 65 kDa using Superose 6 gel filtration. The purified enzyme showed optimal activity at pH of 6.5 and was inhibited by dithiothreitol and Mg2+, Mn2+, Ni2+, Cu2+, Zn2+, Fe2+, and Fe3+ ions. It was also inhibited by GW4869, which is a non-competitive inhibitor of Mg2+-dependent neutral SMase 2 (encoded by SMPD3), that protects against cytochrome c release-mediated cell death. Subfractionation experiments showed that mt-iSMase localizes in the IMS of the mitochondria, implying that mt-iSMase may play a critical role in generating ceramides for MOMP, cytochrome c release, and apoptosis. These data suggest that the purified enzyme in this study is a novel SMase.