• Title/Summary/Keyword: MOLECULAR METHOD

Search Result 3,683, Processing Time 0.028 seconds

Use of Conformational Space Annealing in Molecular Docking

  • Lee, Kyoung-Rim;Czaplewski, Cezary;Kim, Seung-Yeon;Lee, Joo-Young
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.221-233
    • /
    • 2004
  • Molecular docking falls into the general category of global optimization problems since its main purpose is to find the most stable complex consisting of a receptor and its ligand. Conformational space annealing (CSA), a powerful global optimization method, is incorporated with the Tinker molecular modeling package to perform molecular docking simulations of six receptor-ligand complexes (3PTB, 1ULB, 2CPP, 1STP, 3CPA and 1PPH) from the Protein Data Bank. In parallel, Monte Carlo with minimization (MCM) method is also incorporated into the Tinker package for comparison. The energy function, consisting of electrostatic interactions, van der Waals interactions and torsional energy terms, is calculated using the AMBER94 all-atom empirical force field. Rigid docking simulations for all six complexes and flexible docking simulations for three complexes (1STP, 3CPA and 1PPH) are carried out using the CSA and the MCM methods. The simulation results show that the docking procedures using the CSA method generally find the most stable complexes as well as the native -like complexes more efficiently and accurately than those using the MCM, demonstrating that CSA is a promising search method for molecular docking problems.

  • PDF

Considerations for Making Liposomes by Thin Film-Hydration Method

  • Gyeong-Tak Byeon;Ji-Yoon Son;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.151-156
    • /
    • 2022
  • Liposomes are bilayered particles that are surrounded by an aqueous solvent with amphiphilic substances such as phospholipids. Liposomes have the potential to overcome the limitations of physiochemical properties of existing drugs, and are therefore widely used in research for the treatment of many diseases, especially cancer. Currently, there are many liposome manufacturing methods that use various lipids and amphiphiles. Among them, the thin film-hydration method is a traditional and very simple method to prepare liposomes by hydrating a dry lipid film in an aqueous solvent, which has been widely used in the laboratory until recently. Recently, approaches to new nuclear imaging agents and radiotherapy by loading radioactive isotopes inside liposomes have been actively studied. In this review, we would like to discuss considerations for preparing liposomes using the thin film-hydration method.

Simultaneous Determination of Alkoxyalcohols in Wet Wipes Using Static Headspace Gas Chromatography and Mass Spectrometry

  • Lee, Soojin;Pyo, Heesoo;Chung, Bong Chul;Kim, Haidong;Lee, Jeongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3280-3288
    • /
    • 2014
  • Alkoxyalcohols are used as solvents or preservatives in various consumer products such as wet wipes. The metabolites of alkoxyalcohols are known to be chronically toxic and carcinogenic to animals. Thus, an analytical method is needed to monitor alkoxyalcohols in wet wipes. The aim of this study was to develop a simultaneous analytical method for 14 alkoxyalcohols using headspace gas chromatography coupled with mass spectrometry to analyze the wet wipes. This method was developed by comparing with various headspace extraction parameters. The linear calibration curves were obtained for the method ($r^2$ > 0.995). The limit of detection of alkoxyalcohols ranged from 2 to $200ng\;mL^{-1}$. The precision of the determinative method was less than 18.20% coefficient of variation both intra and inter days. The accuracy of the method ranged from 82.86% to 119.83%. (2-Methoxymethylethoxy)propanol, 2-phenoxyethanol, and 1-phenoxy-2-propanol were mainly detected in wet wipes.

A Simple Method for Extraction of High Molecular Weight DNA fromPorphyra Tenera (Rhodophyta) Using Diatomaceous Earth

  • Kim, Tae-Hoon;Hwang, Mi-Sook;Song, Ju-Dong;Oh, Min-Hyuk;Moon, Yong-Hwan;Chung, Ik-Kyo;Rhew, Tae-Hyoung;Lee, Choon-Hwan
    • ALGAE
    • /
    • v.21 no.2
    • /
    • pp.261-266
    • /
    • 2006
  • The innate soluble polysaccharides and phenolic compounds of marine macroalgae are serious contaminants which interfere with experimental procedures such as restriction enzyme digestion, polymerase chain reaction (PCR) and other enzymatic reactions using extracted DNA samples. The viscous polysaccharides are co-precipitated with DNA samples by isopropanol or ethanol precipitation in conventional experiment. To overcome the problem, a method for the isolation of high molecular weight DNA from Porphyra tenera is developed with the application of diatomaceous earth column. The isolated DNAs by this method were about 50-100 kb in size and could be digested well with restriction enzymes. The nuclease activity seemed to be minimal, and high reproducibility in the arbitrary primed PCR for RAPD analyses was a distinctive feature. These results suggest that this method is very efficient in isolating nucleic acid from macroalgae including Porphyra.

A Study on the Global Optimization Technique Based upon Molecular Dynamics (분자 동역학 방식을 사용한 전역 최적화 기법에 관한 연구)

  • Choi, Deok-Kee;Kim, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1223-1230
    • /
    • 1999
  • This paper addresses a novel optimization technique based on molecular dynamics simulation which has been utilized for physical model simulation at various disciplines. In this study, objective functions are considered to be potential functions, which depict molecular interactions. Comparisons of typical optimization method such as the steepest descent and the present method for several test functions are made. The present method shows applicability and stability in finding a global optimum.

Multiscale simulation based on kriging based finite element method

  • Sommanawat, Wichain;Kanok-Nukulchai, Worsak
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.353-374
    • /
    • 2009
  • A new seamless multiscale simulation was developed for coupling the continuum model with its molecular dynamics. Kriging-based Finite Element Method (K-FEM) is employed to model the continuum base of the entire domain, while the molecular dynamics (MD) is confined in a localized domain of interest. In the coupling zone, where the MD domain overlaps the continuum model, the overall Hamiltonian is postulated by contributions from the continuum and the molecular overlays, based on a quartic spline scaling parameter. The displacement compatibility in this coupling zone is then enforced by the Lagrange multiplier technique. A multiple-time-step velocity Verlet algorithm is adopted for its time integration. The validation of the present method is reported through numerical tests of one dimensional atomic lattice. The results reveal that at the continuum/MD interface, the commonly reported spurious waves in the literature are effectively eliminated in this study. In addition, the smoothness of the transition from MD to the continuum can be significantly improved by either increasing the size of the coupling zone or expanding the nodal domain of influence associated with K-FEM.

Massive Identification of Cancer-Specific Nucleic Acid Ligands

  • Lee, Young Ju;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.2
    • /
    • pp.77-80
    • /
    • 2005
  • Targeting of complex system such as human cells rather than biochemically pure molecules will be a useful approach to massively identify ligands specific for the markers associated with human disease such as cancer and simultaneously discover the specific molecular markers. In this study, we developed in vitro selection method to identify nuclease-resistant nucleic acid ligands called RNA aptamers that are specific for human cancer cells. This method is based on the combination of the cell-based selection and subtractive systematic evolution of ligands by exponential enrichment (SELEX) method. These aptamers will be useful for cancer-specific ligands for proteomic research to identify cancer-specific molecular markers as well as tumor diagnosis and therapy.

Improved Synthesis of the Tetrasaccharide Repeat Unit of the O-Antigen Polysaccharide from Escherichia coli O77

  • Lee, Bo-Young;Baek, Ju-Yuel;Jeon, Heung-Bae;Kim, Kwan-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.257-262
    • /
    • 2007
  • The efficient synthesis of a tetrasaccharide, the suitably protected form of the repeat unit, →2)-α-D-Manp-(1→2)-β-D-Manp-(1→3)-α-D-GlcpNAc-(1→6)-α-D-Manp-(1→, of the O-antigen polysaccharide of the lipopolysaccharide from E. coli O77 has been accomplished. Glycosylation reactions for the coupling of four monosaccharide building blocks of the tetrasaccharide were carried out employing the CB glycoside method, the mannosyl 4-pentenoate/PhSeOTf method, and the glycosyl trichloroacetimidate method with complete stereoselectivities in excellent yields.

Analysis of two-dimensional flow fields in the multi-stage turbomolecular pump using the DSMC method (DSMC법을 이용한 터보분자펌프 다단 익렬의 2차원 유동장 해석)

  • 황영규;허중식;박종윤
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.83-94
    • /
    • 2000
  • The performance of a turbomolecular pump(TMP) in both molecular and transition flow regions is predicted by the numerical solutions of the Boltzmann equation obtained by the direct simulation Monte Carlo method. The compression characteristics of the TMP are investigated for a wide range of the Knudsen number( Kn ). The maximum compression ratios strongly depend on Kn in transition region, while do they weakly on Kn in free molecular flow region. The present numerical results of the single blade row in both molecular and transition regions are used to predict the overall performance of a TMP, which has three kinds of blade with 24-rows.

  • PDF

On the continuum formulation for modeling DNA loop formation

  • Teng, Hailong;Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.219-237
    • /
    • 2011
  • Recent advances in scientific computing enable the full atomistic simulation of DNA molecules. However, there exists length and time scale limitations in molecular dynamics (MD) simulation for large DNA molecules. In this work, a two-level homogenization of DNA molecules is proposed. A wavelet projection method is first introduced to form a coarse-grained DNA molecule represented with superatoms. The coarsened MD model offers a simplified molecular structure for the continuum description of DNA molecules. The coarsened DNA molecular structure is then homogenized into a three-dimensional beam with embedded molecular properties. The methods to determine the elasticity constants in the continuum model are also presented. The proposed continuum model is adopted for the study of mechanical behavior of DNA loop.