• 제목/요약/키워드: MOE(Modulus of Elasticity)

검색결과 84건 처리시간 0.026초

Influence of Composition of Layer Layout on Bending and Compression Strength Performance of Larix Cross-Laminated Timber (CLT)

  • Da-Bin SONG;Keon-Ho KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권4호
    • /
    • pp.239-252
    • /
    • 2023
  • In this study, bending and compression strength tests were performed to investigate effect of composition of layer layout of Larix cross-laminated timber (CLT) on mechanical properties. The Larix CLT consists of five laminae, and specimens were classified into four types according to grade and composition of layer. The layer's layout were composited as follows 1) cross-laminating layers in major and minor direction (Type A), and 2) cross-laminating external layer in major direction and internal layer applied grade of layer in minor direction (Type B). E12 and E16 were used as grades of lamina for major direction layer of Type A and external layer of Type B according to KS F 3020. In results of the bending test of CLT using same grade layer according to layer composition, the modulus of elasticity (MOE) of Type B was higher than Type A. In case of prediction of bending MOE of Larix CLT, the experimental MOE was higher than 1.00 to 1.09 times for Shear analogy method and 1.14 to 1.25 times for Gamma method. Therefore, it is recommended to predict the bending MOE for Larix CLT by shear analogy method. Compression strength of CLT in accordance with layer composition was measured to be 2% and 9% higher for Type A using E12 and E16 layers than Type B, respectively. In failure mode of Type A, progress direction of failure generated under compression load was confirmed to transfer from major layer to minor layer by rolling shear or bonding line failure due to the middle lamina in major direction.

Evaluation of Physical and Mechanical Properties of Non-certificated Laminated Veneer Lumber (LVL) Circulated in Domestic Lumber Market

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권5호
    • /
    • pp.429-436
    • /
    • 2011
  • The selected physical and mechanical properties of non-certificated LVL circulated in domestic lumber market were investigated and compared to relevant standards. The tested LVL passed the moisture content and the soaking delamination rate limit as per domestic (KS) and Japanese standard (JAS). The evaluated mechanical properties were flatwise/edgewise bending strength, modulus of elasticity (MOE), horizontal shear and compressive strength. The 30 mm-thick LVL showed significantly higher bending strength than that of the 25 mm-thick LVL. The modulus of elasticity (MOE) showed same tendency in the results of bending strength. The edgewise bending strength and MOE were higher than that of flatwise bending strength and MOE. The horizontal shear strength values were also showed similar results to bending strength values. The tested results were compared each other and each products were graded according to JAS 701 grade specification. The failure mode of LVL in bending test showed the similar failure mode of solidwood that failed in a simple tension manner (splintery tension). The glue line failure was severe in 25 mm-thick specimens due to concentration of shear stress in layer discontinuity containing small voids and starved glue lines. In horizontal shear strength test, failure mode of LVL showed the typical horizontal shear failure. Compressive specimens failed with fiber crushing in company with apparent delamination that splitted along the length of the specimens. From the results, the complete bonding between lamination and consistency in thin veneer layer were considered as a critical factor in the mechanical properties of LVL. Moreover, the standard test procedure and specification for non-certificated LVL should be required to check the performance of uncertificated materials.

The Mechanical Behavior and the Anatomical Changes of Wood due to Variation of Deflection Rates

  • Kang, Chun Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권5호통권133호
    • /
    • pp.7-12
    • /
    • 2005
  • The objective of this study is to estimate the mechanical behavior in bending and the anatomical changes of wood under several deflection rates. Sample specimens of water-saturated Japanese cedar (Cryptomeria japonica) were stressed to rupture under several deflection rates. Mechanical properties of wood such as modulus of elasticity, modulus of rupture and stress at proportional limit, and anatomical changes affected by deflection rates were estimated. Microscopic observations on compression side of the test specimens when the specimen was loaded to rupture were carried out by the SEM (scanning electron microscopy). The results are summarized as follows: 1. The mechanical properties of wood were affected by variations of the deflection rates. The modulus of elasticity (MOE), modulus of rupture (MOR) and stress at proportional limit were in proportion to the logarithm of deflection rates. 2. The deflection of wood at rupture in bending increased as deflection rates decreased. 3. The variations of the microscopic deformations of sample specimens were closely related to the deflection of wood at rupture. In case of largely deflected wood by maximum bending load, severe and abundant microscopic deformations were observed.

Influence of Rice Straw, Bagasse, and their Combination on the Properties of Binderless Particleboard

  • JAMALUDIN, Mohd Ariff;BAHARI, Shahril Anuar;ZAKARIA, Mohd Nazarudin;SAIPOLBAHRI, Nurfarah Syafikah
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.22-31
    • /
    • 2020
  • In this study, rice straw and bagasse are used as raw materials to produce binderless particleboard (BPB). This study aims to evaluate the mechanical and physical properties of BPB. We identify the raw material that would be better for the production of BPB from the viewpoint of their basic properties. The BPBs are made from rice straw, bagasse, and combinations of both in ratios of 50:50 and 40:60, respectively. The modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) strength, water absorption, and thickness swelling properties of the different BPBs are determined and compared. Results showed that all the properties are significantly influenced by the type of particles or particle combinations in the BPB. BPBs made from bagasse alone have the highest MOR, MOE, and IB mean values, whereas BPBs made from rice straw alone exhibit the lowest MOR, MOE, and IB values. Meanwhile, BPBs made from a combination of rice straw and bagasse at 40:60 ratio by weight have the second highest values for properties such as MOR, MOE, and IB, followed by BPBs made from a combination of rice straw and bagasse at 50:50 ratio by weight.

삭편판과 단판 또는 합판을 구성 접착한 콤플라이 복합재에 관한 연구 (Studies on Comply-composites bonded with Particleboard and Veneer or Plywood)

  • 이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권4호
    • /
    • pp.86-101
    • /
    • 1990
  • The primary objective of this research was to investigate the strength properties of Comply, a composite panel. fabricated with particle board as core material and veneer or plywood as face and back. 20types of comply composites were manufactured according to the four specific gravity levels(0.5, 0.6, 0.7 or 0.8) of particleboard core and three veneer or two plywood thicknesses for face and back. They were tested and compared with matching particleboard (control) on moisture content. specific gravity, bending properties(MOE, MOR SPL). nail resistance and internal bond strength. The obtained results were summarized as follows: The increasing effect of modulus of elasticity was shown by the increase of face and back veneer or plywood thickness. The modulus of rupture and stress at proportional limit of the comply composites bonded with 3mm thick veneers or 3mm thick plywood face and back were higher than 2mm thick veneer or 2mm thick plywood as face and back. Both of modulus of rupture and stress at proportional limit on bending of Comply were higher than those of control board. Also the modulus of elasticity of Comply showed much higher than that of control board. The nail resistance of Comply, composed of plywood as face and back was higher than that of veneer. The nail resistance of control board was higher than that of Comply at Sp.Gr 0.7 and 0.8 core boards. Internal bond of Comply, composed of 1mm and 2mm thick veneer as face and back was higher than that of 3mm thick veneer. The increasing effect of modulus of elasticity was shown by the increase of shelling ratio in Comply composed of veneer and plywood as face and back. The modulus of rupture was increased by the increment of shellmg ratio in Compiy, composed of plywood as face and back. The modulus of elasticity and modulus of. rupture of comply were higher than those of particleboard(control) in effect of shelling ratio. Therefore it was concluded that the mechanical property values of Comply were clearly greater than those of particleboard(control).

  • PDF

Nondestructive Evaluation of Bending Strength Performances for Red Pine Containing Knots Using Flexural Vibration Techniques

  • Byeon, Hee-Seop;Ahn, Sang-Yeol;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권5호통권133호
    • /
    • pp.13-20
    • /
    • 2005
  • This paper deals with flexural vibration techniques as a means of predicting bending strength properties for quarter-sawn and flat-sawn planes of red pine containing knots. Dynamic modulus of elasticity $(MOE_d)$ was calculated from resonance frequency obtained from the flexural vibration induced by a magnetic driver in quarter-sawn and flat-sawn planes of red pine containing knots. The dynamic MOE were well correlated to bending strength properties. Their correlation coefficients ranged from 0.866 to 0.800 for the regression between dynamic MOE and static bending MOE or MOR. The difference of the values between quarter-sawn and flat-sawn was very small. These values were higher than correlation between percentage of total knot diameter to total width of red pine specimen $(K_T(%))$ as well as $K_O(%)$ base upon ASTM D 3737 and static bending strength properties (correlation coefficient r = 0.448~0.704), and were similar to those between static bending MOE and bending MOR (r = 0.850). These results indicate that dynamic MOE obtained from resonance frequency induced by flexural vibration of magnetic driver is able to effectively use for predicting of static bending strength of red pine containing knots as well as static MOE.

뉴질랜드산(産) 라디에타 소나무의 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究) (The Mechanical Properties of New Zealand-grown Radiata Pine)

  • 오승원
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.12-17
    • /
    • 1996
  • This study was carried out to investigate some mechanical properties for wood rational utilization of heartwood and sapwood in radiata pine according to basic density, ring width and proportion of latewood which were grown in New Zealand. This result were summarized as follow: Heartwood showed 35.78(MPa) of the compression strength parallel to the grain while sapwood showed 42.08(MPa). The modulus of rupture in static bending was higher in sapwood showing 86.12(MPa) than in heartwood 72.99(MPa) Heartwood had 7.38(GPa) for the modulus of elasticity in static bending and sapwood 8.17(GPa). As the basic density and proportion of latewood increased: compression strength parallel to the grain, MOR and MOE in static bending had a tendency to increase. As ring width increased, the mechanical properties decreased.

  • PDF

국내 기계등급구조재의 등급구분체계 및 기준설계값 결정방법 연구 (Determination of Grades and Design Strengths of Machine Graded Lumber in Korea)

  • 홍정표;이전제;박문재;여환명;방성준;김철기;오정권
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권4호
    • /
    • pp.446-455
    • /
    • 2015
  • 국내외 기계등급제재목(구조재 및 층재)의 등급기준 및 설계강도 산출방법을 비교 분석하고 국내 제재산업 실정을 고려한 평균 탄성계수(modulus of elasticity, 이하 MOE) 기준방법 적용을 제안하였다. 먼저 올바른 기계등급제재목 기준 정착을 위해 기계등급구조재와 기계등급층재의 공통점과 차이점을 설명하였다. 최소 고정 MOE 기준 등급을 사용하는 국내 기준은 등급구분에는 편리하나 휨강도(modulus of rupture, 이하 MOR) 예측과 자원이용도 측면에서는 효율성이 낮은 것으로 파악되었다. 해외에서 사용되는 평균 MOE 기준 방법은 초기 컴퓨터 기반 작동을 요구하나 MOR-MOE 직선회귀에 근거한 합리적인 MOR 예측과 품질관리 측면에서 효율성이 높은 것으로 분석되었다. 무엇보다도 현 국내 기계등급구조재 등급체계는 수종별 강도 특성을 반영하지 못하고 있다는 것이 가장 큰 문제점으로 분석되었으며 이러한 결과를 기반으로 MOR-MOE 직선회귀분석에 근거한 기계등급제재목 등급기준 및 기준설계값 산출방법 적용을 제안하였다. 이를 통하여 궁극적으로 부가가치가 높은 국산 기계등급구조재 생산 활성화를 이루고, 기계 등급구조재의 층재 전용 가능에 따른 구조용 집성재 가격경쟁력 제고 효과를 얻을 수 있다고 사료되었다.

닥나무의 목질부로 만든 우드세라믹의 비파괴휨강도평가 -소성온도의 영향- (Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia kazinoki Sieb. -Effect of Carbonization Temperature-)

  • 변희섭;원경록;이호영;오승원
    • 농업생명과학연구
    • /
    • 제46권1호
    • /
    • pp.35-41
    • /
    • 2012
  • 공진주파수 모드를 이용하는 비파괴 평가기술법을 닥나무를 소성온도별(600, 800, 1000, $1200^{\circ}C$)로 제조한 우드세라믹에 적용하였다. 공진주파수 및 동적 탄성계수는 소성온도가 증가할수록 증가하였다. 동적 탄성계수 및 정적 휨 탄성계수와 휨강도사이에는 밀접한 상관관계가 나타났다. 따라서 공진 주파수 모드를 사용하는 동적 탄성계수측정은 소성온도에 따라 제조된 우드세라믹의 휨강도를 예측하는 비파괴 평가 방법으로 유용할 것으로 판단된다.

목재 섬유 복합재(複合材)에 혼합이론(混合理論)의 적용에 관(關)한 연구(硏究) (1) - 유황(硫黃) 화합물(化合物)을 사용한 목재(木材) 섬유(纖維) 복합재(複合材)의 기계적 성질(性質) - (The Application of Rule of Mixtures to Fiber-Reinforced Composites(1) - Mechanical Properties of Fiber-Reinforced, Sulfur-Based Composites -)

  • 이병근
    • Journal of the Korean Wood Science and Technology
    • /
    • 제11권3호
    • /
    • pp.3-13
    • /
    • 1983
  • 크라프트 펄프의 screening rejects, 볏짚 그리고 이들의 1 : 1 비율의 혼합 물질을 사용하여, 5가지의 다른 섬유판(纖維板) 밀도(密度)를 가지는 섬유판을 만들었다. 이들을 유황(硫黃) 화합물(化合物)에 침적(沈積)시켰다. 제조(製造)한 복합재(複合材) 속의 유황(硫黃) 화합물(化合物)의 노화효과(老化效果)를 관찰하기 위해 1년동안 일정한 시간(時間) 간격(間隔)으로, 이 복합재의 기계적 강도(强度)를 Young 계수(係數)로 나타내었다. 최적(最適)의 섬유판과 유황 화합물의 제조 조건하(下)에서, 이 목재(木材) 섬유(纖維) 복합재(複合材)의 Young 계수(係數)는 기존의 합성수지로 만든 복합재나 목재 선유로 만든 집성재(集成材)나 복합재보다 훨씬 큰 결과를 보여 주었다. 예를 들어, 목재 섬유판 밀도가 0.35gm/$cm^3$인 이 복합재의 modulus of elasticity와 modulus of rupture는 각각 1,000,000psi와 7000psi인데 반해, 섬유판 밀도가 1.28gm/$cm^3$인 hardboard의 그것들은 각각 800,000psi와 6000psi를 나나내었다.

  • PDF