• 제목/요약/키워드: MODIS land cover

검색결과 89건 처리시간 0.018초

최근 MODIS 식생지수 자료(2006-2008)를 이용한 동아시아 지역 지면피복 분류 (Land Cover Classification over East Asian Region Using Recent MODIS NDVI Data (2006-2008))

  • 강전호;서명석;곽종흠
    • 대기
    • /
    • 제20권4호
    • /
    • pp.415-426
    • /
    • 2010
  • A Land cover map over East Asian region (Kongju national university Land Cover map: KLC) is classified by using support vector machine (SVM) and evaluated with ground truth data. The basic input data are the recent three years (2006-2008) of MODIS (MODerate Imaging Spectriradiometer) NDVI (normalized difference vegetation index) data. The spatial resolution and temporal frequency of MODIS NDVI are 1km and 16 days, respectively. To minimize the number of cloud contaminated pixels in the MODIS NDVI data, the maximum value composite is applied to the 16 days data. And correction of cloud contaminated pixels based on the spatiotemporal continuity assumption are applied to the monthly NDVI data. To reduce the dataset and improve the classification quality, 9 phenological data, such as, NDVI maximum, amplitude, average, and others, derived from the corrected monthly NDVI data. The 3 types of land cover maps (International Geosphere Biosphere Programme: IGBP, University of Maryland: UMd, and MODIS) were used to build up a "quasi" ground truth data set, which were composed of pixels where the three land cover maps classified as the same land cover type. The classification results show that the fractions of broadleaf trees and grasslands are greater, but those of the croplands and needleleaf trees are smaller compared to those of the IGBP or UMd. The validation results using in-situ observation database show that the percentages of pixels in agreement with the observations are 80%, 77%, 63%, 57% in MODIS, KLC, IGBP, UMd land cover data, respectively. The significant differences in land cover types among the MODIS, IGBP, UMd and KLC are mainly occurred at the southern China and Manchuria, where most of pixels are contaminated by cloud and snow during summer and winter, respectively. It shows that the quality of raw data is one of the most important factors in land cover classification.

아시아-오세아니아 지역의 MODIS 지면피복분류 개선 (Improvement of MODIS land cover classification over the Asia-Oceania region)

  • 박지열;서명석
    • 대한원격탐사학회지
    • /
    • 제31권2호
    • /
    • pp.51-64
    • /
    • 2015
  • 본 연구에서는 MODerate resolution Imaging Spectroradiometer (MODIS) 지면피복 분류자료(MCD12Q1)에서 분류오류로 판단되는 화소들을 재분류함으로써 분류 정확도를 개선하였다. 최근 12년(2001-2012)간의 MODIS 지면피복 분류자료에서 지면피복 유형이 3개 이상으로 분류된 화소는 분류상에 오류가 있다고 판단하여 지면피복 재분류 화소로 선정하였다. 지면피복 재분류를 위해 공간해상도는 1 km이고 시간주기는 8일인 MODIS Normalized Difference Vegetation Index (NDVI) 자료를 이용하였다. NDVI 자료 중 구름 등으로 오염된 화소를 보정하기 위해 시 공간 연속성을 이용한 보정기법인 Correction based on Spatial and Temporal Continuity (CSaTC) 기법을 이용하였다. 보정된 NDVI 자료를 1개월 주기로 합성한 후 분류 오류로 판단된 화소들에 대해 Iterative Self-Organizing Data Analysis (ISODATA) 기법으로 군집화를 수행하였다. 각 군집별 식생 계절변동 특성을 고려하여 지면피복을 분류한 후 정상으로 판정된 MODIS 지면피복과 합성하여 최종 지면피복 재분류 자료를 산출하였다. 분류 정확도는 GPS를 이용한 현장관측 자료와 유럽우주국의 지상검증참조자료 등 총 138개 지상 관측자료를 이용하여 검증을 수행하였다. 2012년 MODIS 지면피복 분류자료의 정확도는 약 68%이었으나 본 연구에서 재분류한 지면피복자료의 정확도는 약 74%로 나타나 일부 화소들에서 분류 정확도가 개선되었다.

동북아시아 지역에서의 최근 12년간 (2001-2012) MODIS 토지피복 분류 자료의 특성 (Characteristics of MODIS land-cover data sets over Northeast Asia for the recent 12 years(2001-2012))

  • 박지열;서명석
    • 대한원격탐사학회지
    • /
    • 제30권4호
    • /
    • pp.511-524
    • /
    • 2014
  • 본 연구에서는 12년(2001-2012)간의 MODerate Resolution Imaging Spectroradiometer (MODIS) 토지피복 자료를 이용하여 동북아시아 지역에 대한 토지피복 유형별 통계적 점유율과 연변동을 조사하였다. MODIS 토지피복 자료의 공간해상도는 500 m이며 토지피복 유형의 수는 17개이다. 12년 평균에서 농지(36.96%), 초지(23.14%) 그리고 혼합림(22.97%) 3가지 유형이 분석 영역의 80% 이상을 점유하고 있는 것으로 나타났고, 그 외 농지와 자연 식생의 혼합유형(6.09%), 낙엽활엽수림(4.26%), 도시(2.46%) 그리고 사바나(1.54%) 유형이 점유하고 있는 것으로 나타났다. 비록 자료의 사용 기간이 짧지만 단순회귀분석에서 상록침엽수림, 낙엽활엽수림, 혼합림은 유의수준 5%에서 점유율이 증가하는 경향을 보였으나 사바나 유형은 유의수준 5%에서 감소하는 경향을 보였다. 토지피복 유형이 매년 다르게 분류되는 화소의 비율이 10% 이상이며 토지피복 유형별 점유율의 연변동은 농지(1.41%), 혼합림(0.82%), 초지(0.73%)에서 가장 두드러지게 나타났다. 또한, 12년 동안 토지피복 유형이 1개로만 분류된 화소의 비율은 단지 57%이며, 나머지 화소들에서는 2개 이상으로 분류되었으며 최대 9개 유형으로 분류된 화소도 존재했다. 공간적으로 균질하게 1개 유형만 분포하고 있는 중국 동부와 북서부 지역을 제외한 전체 지역에서 토지피복 유형이 연도별도 다르게 분류되고 있다. 따라서 토지피복 변화에 소요되는 시간적 규모를 고려할 때 동북아시아 지역에서 MODIS 토지피복 자료를 이용할 시 주의가 필요하다.

Terra MODIS 및 Sentinel-2 NDVI의 식생 및 농업 모니터링 비교 연구 (A Comparative Analysis of Vegetation and Agricultural Monitoring of Terra MODIS and Sentinel-2 NDVIs)

  • 손무빈;정지훈;이용관;김성준
    • 한국농공학회논문집
    • /
    • 제63권6호
    • /
    • pp.101-115
    • /
    • 2021
  • The purpose of this study is to evaluate the compatibility of the vegetation index between the two satellites and the applicability of agricultural monitoring by comparing and verifying NDVI (Normalized Difference Vegetation Index) based on Sentinel-2 and Terra MODIS (Moderate Resolution Imaging Spectroradiometer). Terra MODIS NDVI utilized 16-day MOD13Q1 data with 250 m spatial resolution, and Sentinel-2 NDVI utilized 10-day Level-2A BOA (Bottom Of Atmosphere) data with 10 m spatial resolution. To compare both NDVI, Sentinel-2 NDVIs were reproduced at 16-day intervals using the MVC (Maximum Value Composite) technique. As a result of time series NDVIs based on two satellites for 2019 and compare by land cover, the average R2 (Coefficient of determination) and RMSE (Root Mean Square Error) of the entire land cover were 0.86 and 0.11, which indicates that Sentinel-2 NDVI and MODIS NDVI had a high correlation. MODIS NDVI is overestimated than Sentinel-2 NDVI for all land cover due to coarse spatial resolution. The high-resolution Sentinel-2 NDVI was found to reflect the characteristics of each land cover better than the MODIS NDVI because it has a higher discrimination ability for subdivided land cover and land cover with a small area range.

MODIS 자료를 이용한 한반도 지면피복 분류 (Classification of Land Cover over the Korean Peninsula using MODIS Data)

  • 강전호;서명석;곽종흠
    • 대기
    • /
    • 제19권2호
    • /
    • pp.169-182
    • /
    • 2009
  • To improve the performance of climate and numerical models, concerns on the land-atmosphere schemes are steadily increased in recent years. For the realistic calculation of land-atmosphere interaction, a land surface information of high quality is strongly required. In this study, a new land cover map over the Korean peninsula was developed using MODIS (MODerate resolution Imaging Spectroradiometer) data. The seven phenological data set (maximum, minimum, amplitude, average, growing period, growing and shedding rate) derived from 15-day normalized difference vegetation index (NDVI) were used as a basic input data. The ISOData (Iterative Self-Organizing Data Analysis), a kind of unsupervised non-hierarchical clustering method, was applied to the seven phenological data set. After the clustering, assignment of land cover type to the each cluster was performed according to the phenological characteristics of each land cover defined by USGS (US. Geological Survey). Most of the Korean peninsula are occupied by deciduous broadleaf forest (46.5%), mixed forest (15.6%), and dryland crop (13%). Whereas, the dominant land cover types are very diverse in South-Korea: evergreen needleleaf forest (29.9%), mixed forest (26.6%), deciduous broadleaf forest (16.2%), irrigated crop (12.6%), and dryland crop (10.7%). The 38 in-situ observation data-base over South-Korea, Environment Geographic Information System and Google-earth are used in the validation of the new land cover map. In general, the new land cover map over the Korean peninsula seems to be better classified compared to the USGS land cover map, especially for the Savanna in the USGS land cover map.

시계열 MODIS 영상을 이용한 논 분류와 지형학적 인자에 따른 불확실성 분석 (An Uncertainty Analysis of Topographical Factors in Paddy Field Classification Using a Time-series MODIS)

  • 윤성한;최진용;유승환;장민원
    • 한국농공학회논문집
    • /
    • 제49권5호
    • /
    • pp.67-77
    • /
    • 2007
  • The images of MODerate resolution Imaging Spectroradiometer (MODIS) that provide wider swath and shorter revisit frequency than Land Satellite (Landsat) and Satellite Pour I' Observation de la Terre (SPOT) has been used fer land cover classification with better spatial resolution than National Oceanic and Atmosphere Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR)'s images. Due to the advantages of MODIS, several researches have conducted, however the results for the land cover classification using MODIS images have less accuracy of classification in small areas because of low spatial resolution. In this study, uncertainty of paddy fields classification using MODIS images was conducted in the region of Gyeonggi-do and the relation between this uncertainty of estimating paddy fields and topographical factors was also explained. The accuracy of classified paddy fields was compared with the land cover map of Environmental Geographic Information System (EGIS) in 2001 classified using Landsat images. Uncertainty of paddy fields classification was analyzed about the elevation and slope from the 30m resolution Digital Elevation Model (DEM) provided in EGIS. As a result of paddy classification, user's accuracy was about 41.5% and producer's accuracy was 57.6%. About 59% extracted paddy fields represented over 50 uncertainty in one hundred scale and about 18% extracted paddy fields showed 100 uncertainty. It is considered that several land covers mixed in a MODIS pixel influenced on extracted results and most classified paddy fields were distributed through elevation I, II and slope A region.

MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구 (A Case Study of Land-cover Classification Based on Multi-resolution Data Fusion of MODIS and Landsat Satellite Images)

  • 김예슬
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1035-1046
    • /
    • 2022
  • 이 연구에서는 토지 피복 분류를 위한 다중 해상도 자료 융합의 적용성을 평가하였다. 여기서 다중 해상도 자료 융합 모델로는 spatial time-series geostatistical deconvolution/fusion model (STGDFM)을 적용하였다. 연구 지역은 미국 Iowa 주의 일부 농경 지역으로 선정하였으며, 대상 지역의 규모를 고려해 다중 해상도 자료 융합의 입력 자료로 Moderate Resolution Imaging Spectroradiometer (MODIS) 및 Landsat 영상을 사용하였다. 이를 바탕으로 STGDFM 적용해 Landsat 영상이 결측된 시기에서 가상의 Landsat 영상을 생성하였다. 그리고 획득한 Landsat 영상과 함께 STGDFM의 융합 결과를 입력 자료로 사용해 토지 피복 분류를 수행하였다. 특히 다중 해상도 자료 융합의 적용성 평가를 위해 획득한 Landsat 영상만을 이용한 분류 결과와 Landsat 영상 및 융합 결과를 모두 이용한 분류 결과를 비교 평가하였다. 그 결과, Landsat 영상만을 이용한 분류 결과에서는 대상 지역의 주요 토지 피복인 옥수수와 콩 재배지에서 혼재 양상이 두드러지게 나타났다. 또한 건초 및 곡물 지역과 초지 지역 등 식생 피복 간의 혼재 양상도 큰 것으로 나타났다. 반면 Landsat 영상 및 융합 결과를 이용한 분류 결과에서는 옥수수와 콩 재배지의 혼재 양상과 식생 피복 간의 혼재 양상이 크게 완화되었다. 이러한 영향으로 Landsat 영상 및 융합 결과를 이용한 분류 결과에서 분류 정확도가 약 20%p 향상되었다. 이는 STGDFM을 통해 MODIS 영상이 갖는 시계열 분광 정보를 융합 결과에 반영하면서 Landsat 영상의 결측을 보완할 수 있었고, 이러한 시계열 분광 정보가 분류 과정에 결합되면서 오분류를 크게 줄일 수 있었던 것으로 판단된다. 본 연구 결과를 통해 토지 피복 분류에 다중 해상도 자료 융합이 효과적으로 적용될 수 있음을 확인하였다.

Comparison of Three Land Cover Classification Algorithms -ISODATA, SMA, and SOM - for the Monitoring of North Korea with MODIS Multi-temporal Data

  • Kim, Do-Hyung;Jeong, Seung-Gyu;Park, Chong-Hwa
    • 대한원격탐사학회지
    • /
    • 제23권3호
    • /
    • pp.181-188
    • /
    • 2007
  • The objective of this research was to investigate the optimal land cover classification algorithm for the monitoring of North Korea with MODIS multi-temporal data based on monthly phenological characteristics. Three frequently used land cover classification algorithms, ISODATA1), SMA2), and SOM3) were employed for this study; the land cover categories were forest, grass, agricultural, wetland, barren, built-up, and water body. The outcomes of the study can be summarized as follows. First, the overall classification accuracy of ISODATA, SMA, and SOM was 69.03%, 64.28%, and 73.57%, respectively. Second, ISODATA and SMA resulted in a higher classification accuracy of forest and agricultural categories, but SOM performed better for the built-up area, bare soil, grassland, and water. A possible explanation for this difference would be related to the difference of sensitivity against the vegetation activity. This would be related to the capability of SOM to express all of their values without any loss of data by maintaining the topology between pixels of primitive data after classification, while ISODATA and SMA retain limited amount of data after normalization process. Third, we can conclude that SOM is the best algorithm for monitoring the land cover change of North Korea.

Retrieval of emissivity and land surface temperature from MODIS

  • Suh Myoung-Seok;Kang Jeon-Ho;Kim So-Hee;Kwak Chong-Heum
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.165-168
    • /
    • 2005
  • In this study, emissivity and land surface temperature (LST) were retrieved using the previously developed algorithms and Aqua/MODIS data. And sensitivity of estimated emissivity and LST to the predefined values, such as land cover, normalized difference vegetation index (NOVI) and spectral emissivity were investigated. The methods used for emissivity and LST were vegetation cover method (VCM) and four different split-window algorithms. The spectral emissivity retrieved by VCM was not sensitive to the NOVI error but more sensitive to the land cover error. The comparison of LST showed that the LST was systematically different without regard to the land cover and season. And the LST was very sensitive to the emissivity error excepting the Uliveri et al. This preliminary result indicates that more works are needed for the retrieval of reliable LST from satellite data.

  • PDF

MODIS 다중시기 영상의 선형분광혼합화소분석을 이용한 한반도 토지피복분류도 구축 (Land Cover Classification of the Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data)

  • 정승규;박종화;김상욱
    • 대한원격탐사학회지
    • /
    • 제22권6호
    • /
    • pp.553-563
    • /
    • 2006
  • 본 연구의 목적은 MODIS 다중시기영상과 선형분광혼합화소분석(Linear Spectral Mixture Analysis : LSMA)을 이용하여 한반도의 토지피복도를 작성하는 것이다. 다양한 공간해상도와 광역적인 촬영스케일의 MODIS 영상에 LSMA를 이용하여 토지피복분류기 정확도의 향상과 한반도 생물계절적인 특성을 분석하고자 하였다. LSMA는 하나의 화소를 단일의 지표물로 가정하여 영상을 처리하는 기존의 기법과 달리 대상지의 토지피복 특성을 가장 잘 반영하는 순수한 물체의 화소값(Endmember)을 선택하여 자연환경요소들의 하나하나를 분리하는 기법이다. 본 연구에서 MODIS 다중시기 영상에 LSMA를 적용한 결과 남, 북한의 농경지 및 산림지역에 대한 서로 다른 생물계절적인 특성을 파악 할 수 있었으며, 이러한 결과 영상을 ISODATA 무감독분류기법을 통해서 대분류와 중분류하였다. 대분류에서는 79.94%의 전체 정확도를 보였으며, 농업지역은 85.45%, 산림지역은 88.12%로 다른 분류군들에 비해서 가장 높은 정확도를 보였다. 중분류에서는 산림지역과, 농업지역을 더욱 세분화하여 분류하였다. 전체정확도는 82.09%였으며, 활엽수림 86.96%, 논 85.38%로 분류군중 가장 높은 정확도를 나타냈다.